我们反向迭代器的思路是复用正向迭代器的功能,使用一个正向迭代器来创建一个反向迭代器,如果是vector的正向迭代器,创建的就是vector的反向迭代器,如果是list的正向迭代器,创建的就是list的反向迭代器。
我们之前实现普通迭代器是声明了一个迭代器类。此时,我们也要定义一个反向迭代器类。而这个反向迭代器是由正向迭代器构造而来的。
template<class Iterator,class Ref,class Ptr>
struct ReverseIterator
{
typedef ReverseIterator<Iterator,Ref,Ptr> Self;
Iterator _cur;
ReverseIterator(Iterator it)
:_cur(it)
{}
};
在list类中,我们要重命名一个反向迭代器,并将其调用接口写好。其中关于模板参数的书写,我们要注意一下。
第一个模板参数是普通迭代器类型。
第二个是迭代器其指向其数据的数据类型的引用。
第三个是迭代器其指向其数据的数据类型的指针。
并在此基础上定义好const_iterator
typedef __list_iterator<T,T&,T*> iterator;
typedef __list_iterator<T,const T&,const T*> const_iterator;
typedef ReverseIterator <iterator, T&, T*> reverse_iterator;
typedef ReverseIterator <iterator, const T&, const T*> const_reverse_iterator;
这样的好处是,调用普通的rbegin()则创建普通的反向迭代器,其中operator*的返回值是可修改的。
而const成员调用的是const类型rbegin(),则创建了const_iterator。
以下是list中通过普通迭代器构造出反向迭代器的rbegin()、rend()。
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
Self& operator++()
{
--_cur;
return *this;
}
Self& operator++(int)
{
Self& tmp(_cur);
--_cur;
return tmp;
}
Self& operator--()
{
++_cur;
return *this;
}
Self& operator--(int)
{
Self& tmp(_cur);
++_cur;
return tmp;
}
这里先明确一点,在STL中,反向迭代器的rbegin()是由list的end()构造的,也就是_head结点。所以我们在解引用的时候,其实是返回其前一个位置的数据。这样做的好处是为了做到迭代器指向的对称。
Ref operator*()
{
Iterator tmp = _cur;
--tmp;
return *tmp;
}
bool operator!=(const Self& s)
{
return _cur != s._cur;
}
#pragma once
#include
#include"Iterator.h"
namespace zl
{
template<class T>
struct list_node
{
list_node<T>* _next;
list_node<T>* _prev;
T _data;
list_node(const T& x=T())
:_next(nullptr)
,_prev(nullptr)
,_data(x)
{}
};
//1、迭代器要么就是原生指针
//2、迭代器要么就是自定义类型对原生指针的封装,模拟指针的行为
template<class T,class Ref,class Ptr>
struct __list_iterator
{
typedef list_node<T> node;
typedef __list_iterator<T,Ref,Ptr> self;
node* _node;
__list_iterator(node* n)
:_node(n)
{}
Ref& operator*()
{
return _node->_data;
}
Ptr operator->() //it->_a1 it->->_a1 本来应该是两个->,但是为了增强可读性,省略了一个->
{
return &_node->_data;
}
self& operator++()
{
_node = _node->_next;
return *this;
}
self operator++(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
self& operator--()
{
_node = _node->_prev;
return *this;
}
self operator--(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator!=(const self& s)
{
return _node != s._node;
}
bool operator==(const self& s)
{
return _node == s._node;
}
};
//template
//struct __list_reverse_iterator
//{
// typedef list_node node;
// typedef __list_reverse_iterator self;
// node* _node;
// __list_reverse_iterator(node* n)
// :_node(n)
// {}
// Ref& operator*()
// {
// return _node->_data;
// }
// Ptr operator->() //it->_a1 it->->_a1 本来应该是两个->,但是为了增强可读性,省略了一个->
// {
// return &_node->_data;
// }
// self& operator++()
// {
// _node = _node->_prev;
// return *this;
// }
// self operator++(int)
// {
// self tmp(*this);
// _node = _node->_prev;
// return tmp;
// }
// self& operator--()
// {
// _node = _node->_next;
// return *this;
// }
// self operator--(int)
// {
// self tmp(*this);
// _node = _node->_next;
// return tmp;
// }
// bool operator!=(const self& s)
// {
// return _node != s._node;
// }
// bool operator==(const self& s)
// {
// return _node == s._node;
// }
//};
/*template
struct __list_const_iterator
{
typedef list_node node;
typedef __list_const_iterator self;
node* _node;
__list_const_iterator(node* n)
:_node(n)
{}
const T& operator*()
{
return _node->_data;
}
self& operator++()
{
_node = _node->_next;
return *this;
}
self operator++(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
self& operator--()
{
_node = _node->_prev;
return *this;
}
self operator--(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator!=(const self& s)
{
return _node != s._node;
}
bool operator==(const self& s)
{
return _node == s._node;
}
};*/
template<class T>
class list
{
typedef list_node<T> node;
public:
typedef __list_iterator<T,T&,T*> iterator;
typedef __list_iterator<T,const T&,const T*> const_iterator;
//typedef __list_reverse_iterator reverse_iterator;
typedef ReverseIterator <iterator, T&, T*> reverse_iterator;
typedef ReverseIterator <iterator, const T&, const T*> const_reverse_iterator;
//typedef __list_const_iterator const_iterator;
/*reverse_iterator rbegin()
{
return reverse_iterator(_head->_prev);
}
reverse_iterator rend()
{
return reverse_iterator(_head);
}*/
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
iterator begin()
{
//iterator it(_head->_next);
//return it;
return iterator(_head->_next);
}
const_iterator begin() const
{
//iterator it(_head->_next);
//return it;
return const_iterator(_head->_next);
}
iterator end()
{
//iterator it(_head);
//return it;
return iterator(_head);
}
const_iterator end() const
{
//iterator it(_head);
//return it;
return const_iterator(_head);
}
void empty_init()
{
_head = new node;
_head->_next = _head;
_head->_prev = _head;
}
list()
{
/*_head = new node;
_head->_next = _head;
_head->_prev = _head;*/
empty_init();
}
template <class Iterator>
list(Iterator first, Iterator last)
{
empty_init();
while (first != last)
{
push_back(*first);
++first;
}
}
//lt2(lt1) 拷贝构造传统写法
/*list(const list& lt)
{
empty_init();
for (auto e : lt)
{
push_back(e);
}
}*/
void swap(list<T>& tmp)
{
std::swap(_head, tmp._head);
}
//现代写法
list(const list<T>& lt)
{
empty_init();
list<T> tmp(lt.begin(), lt.end());
swap(tmp);
}
//lt1=lt3
list<T>& operator=(list<T> lt)
{
swap(lt);
return *this;
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
void clear()
{
iterator it = begin();
while (it != end())
{
//it = erase(it);
erase(it++);
}
}
void push_back(const T& x=T())
{
/*node* tail = _head->_prev;
node* new_node = new node(x);
tail->_next = new_node;
new_node->_prev = tail;
new_node->_next = _head;
_head->_prev = new_node;*/
insert(end(), x);
}
void push_front(const T& x = T())
{
insert(begin(), x);
}
void pop_back()
{
erase(--end());
}
void pop_front()
{
erase(begin());
}
void insert(iterator pos, const T& x)
{
node* cur = pos._node;
node* prev = cur->_prev;
node* new_node = new node(x);
prev->_next = new_node;
new_node->_prev = prev;
new_node->_next = cur;
cur->_prev = new_node;
}
iterator erase(iterator pos)
{
assert(pos != end());
node* prev = pos._node->_prev;
node* next = pos._node->_next;
prev->_next = next;
next->_prev = prev;
delete pos._node;
return iterator(next);
}
private:
node* _head;
};
void print_list(const list<int>& lt)
{
list<int>::const_iterator it = lt.begin();
while (it != lt.end())
{
//(*it) *= 2;
cout << *it << " ";
++it;
}
cout << endl;
}
void test_list1()
{
list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
list<int>::iterator it = lt.begin();
while (it != lt.end())
{
cout << *it << " ";
++it;
}
cout << endl;
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
print_list(lt);
}
struct AA
{
int _a1;
int _a2;
AA(int a1=0,int a2=0)
:_a1(a1)
,_a2(a2)
{}
};
void test_list2()
{
list<AA> lt;
lt.push_back(AA(1, 1));
lt.push_back(AA(2, 2));
lt.push_back(AA(3, 3));
//AA* ptr
list<AA>::iterator it = lt.begin();
while (it != lt.end())
{
//cout << (*it)._a1 << (*it)._a2 << endl;
cout << it->_a1 << it->_a2 << endl;
//cout << it.operator->()->_a1 << ":" << it.operator->()->_a1 << endl;
++it;
}
cout << endl;
}
void test_list3()
{
list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
auto pos = lt.begin();
++pos;
lt.insert(pos, 20);
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
lt.push_back(100);
lt.push_front(1000);
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
lt.pop_back();
lt.pop_front();
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
}
void test_list4()
{
list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
lt.clear();
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
lt.push_back(10);
lt.push_back(20);
lt.push_back(30);
lt.push_back(40);
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
}
void test_list5()
{
list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
list<int> lt2(lt);
for (auto e : lt2)
{
cout << e << " ";
}
cout << endl;
list<int> lt3;
lt3.push_back(10);
lt3.push_back(20);
lt3.push_back(30);
lt3.push_back(40);
lt3.push_back(50);
for (auto e : lt3)
{
cout << e << " ";
}
cout << endl;
lt = lt3;
for (auto e : lt)
{
cout << e << " ";
}
cout << endl;
}
void test_list6()
{
list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
list<int>::iterator it = lt.begin();
while (it != lt.end())
{
cout << *it << " ";
++it;
}
cout << endl;
list<int>::reverse_iterator rit = lt.rbegin();
while (rit != lt.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
}
}
#pragma once
namespace zl
{
//vector::iterator
//list::iterator
//deque::iterator
template<class Iterator,class Ref,class Ptr>
struct ReverseIterator
{
typedef ReverseIterator<Iterator,Ref,Ptr> Self;
Iterator _cur;
ReverseIterator(Iterator it)
:_cur(it)
{}
Ref operator*()
{
Iterator tmp = _cur;
--tmp;
return *tmp;
}
Self& operator++()
{
--_cur;
return *this;
}
Self& operator--()
{
++_cur;
return *this;
}
bool operator!=(const Self& s)
{
return _cur != s._cur;
}
};
}
#define _CRT_SECURE_NO_WARNINGS 1
#include
#include
#include
#include
#include
#include
using namespace std;
#include "list.h"
#include"Iterator.h"
#include"vector.h"
int main()
{
//zl::test_list1();
//zl::test_list2();
//zl::test_list3();
//zl::test_list4();
//zl::test_list5();
zl::test_list6();
//zl::test_vector8();
//std::vector::iterator it;
//cout << typeid(it).name() << endl;
return 0;
}