- 【数据结构与算法】双向链表(添加节点、更新节点、删除节点、打印链表)
Bulut0907
#数据结构和算法双向链表链表更新节点删除节点打印链表
目录1.单向链表的缺点2.双向链表的介绍3.带head头的双向链表实现1.单向链表的缺点前面我们学习了单向链表。虽然有了单向链表,但在解决某些实际问题时,单向链表的执行效率并不高例如,若实际问题中需要频繁地查找某个节点的前驱节点,使用单向链表存储数据显然没有优势因为单向链表的强项是从前往后查找目标元素,不擅长从后往前查找元素。所以就有了双向链表2.双向链表的介绍双向链表是一种复杂类型的链表,它的节
- 算法面试题
阿芯爱编程
面试算法算法
以下是一些常见的算法面试题:一、排序算法请简述快速排序算法的时间复杂度和空间复杂度,并说明其稳定性。答案:时间复杂度:平均情况:O(nlogn)O(nlogn)O(nlogn),其中nnn是待排序元素的数量。这是因为快速排序每次划分大致将数组分成两半,需要进行lognlognlogn次划分,每次划分的操作近似为线性时间。最坏情况:O(n2)O(n^2)O(n2),当每次划分都极度不平衡(例如已经有
- 【华为机考必备】华为2024届技术岗笔试全解 | 第五套
春秋招笔试突围
最新互联网春秋招试题合集华为春秋招笔试题华为
博主简介深耕互联网大厂校招的算法博主笔试突围,累计发布百万字大厂笔试解析,带领数百名学员斩获华为offer。专栏提供:✅实时更新的华为真题题库✅ACM模式编程实战模板✅高频算法思维导图速记华为笔试核心情报⏱️关键时间节点(2026届预测)地区考试时间窗口考试时长国内每周三19:00~21:002小时固定海外每周三19:00~次周19:00自选2小时连续段重要提醒:机考链接提前1天通过邮箱发送,逾期
- Go算法之希尔排序
思远久安
Go数据结构与算法小白入门算法golang后端排序算法
一、什么是希尔排序希尔排序有点像插入排序的升级版,它的主要就是,我们一开始先确定一个步长(某个长度),然后让i(初始为0)和该步长位置的值比较大小,让i不断++,再用个变量为i+该步长。接着比较之后,缩短步长大小,最终排序到合理位置。在Go语言中实现希尔排序,可以按照以下步骤进行:选择增量序列:增量序列决定了元素之间的间隔。常见的增量序列有希尔增量(初始增量为数组长度的一半,之后每次减半,直到增量
- 6种最新算法(小龙虾优化算法COA、螳螂搜索算法MSA、红尾鹰算法RTH、新雀优化算法NOA、鳑鲏鱼优化算法BFO、蜘蛛蜂优化算法SWO)求解机器人路径规划(提供MATLAB代码)
IT猿手
机器人路径规划优化算法无人机路径规划算法机器人matlab宽度优先开发语言人工智能前端
一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路
- 本周MoonBit新增Wasm1引用计数支持、语法即将添加错误恢复机制
MoonBit月兔
开发语言MoonBit编程语言程序员moonbit
MoonBit更新【WasmMVP】Wasm1后端添加基于Perceus算法的引用计数支持【语法】throwraisetrycatch均被保留为关键字为了即将添加的错误处理机制【Core】List与sorted_map被移动至core/immut下List被移动至core/immut/list包中,并被移除内置类型支持leta=@immut/list.List::Cons(1,Cons(2,Nil
- 使用Python编写你的第一个算法交易程序
盼达思文体科创
Python量化金融python算法numpycondapandas金融
背景Background最近想学习一下量化金融,总算在盈透投资者教育(IBKRCampus)板块找到一篇比较好的算法交易入门教程。我在记录实践过程后,翻译成中文写成此csdn博客,分享给大家。如果你的英语好可以直接看原文。原文在数据准备阶段,采用了pandas_datareader.data读取网络数据,实际中出现了很多问题,我换成了yfinance。可以参考文末完整代码。参考资料:https:/
- 大模型应用层的创业挑战
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
大模型应用层的创业挑战关键词:大模型、应用层、创业、挑战、算法、架构、数据、资源、合作、盈利模型1.背景介绍随着计算能力和数据量的指数级增长,大模型(LargeModels)已经成为人工智能领域的关键驱动因素。大模型的应用从语言模型扩展到图像、视频和音频领域,为各行各业带来了颠覆性的创新。然而,构建和部署大模型的成本高昂,对计算资源和数据的需求也日益增加。本文将探讨大模型应用层面的创业挑战,并提供
- Hyperparameter Tuning 原理与代码实战案例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
HyperparameterTuning原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:超参数调优,模型选择,性能提升,代码实战1.背景介绍1.1问题的由来在机器学习中,模型的选择和调优是至关重要的。模型选择涉及选择合适的算法和架构,而调优则集中在优化模型参数以提升性能。然而,模型参数众多,且每个参数的取值范围可能很广,
- Python 算法交易秘籍(五)
绝不原创的飞龙
默认分类默认分类
原文:zh.annas-archive.org/md5/010eca9c9f84c67fe4f8eb1d9bd1d316译者:飞龙协议:CCBY-NC-SA4.0第十一章:算法交易-实际交易现在我们已经建立了各种算法交易策略,并成功地进行了令人满意的回测,并在实时市场中进行了纸上交易,现在终于到了进行实际交易的时候了。实际交易是指我们在真实市场小时内用真钱执行交易策略。如果您的策略在回测和纸上交易
- 如何在Python上安装xgboost?
cda2024
python开发语言
在数据科学和机器学习领域,XGBoost无疑是一款备受推崇的算法工具。它以其高效、灵活和精确的特点,成为了众多数据科学家和工程师的首选。然而,对于初学者来说,如何在Python环境中成功安装XGBoost可能会成为一个挑战。本文将详细指导你在Python上安装XGBoost的过程,帮助你快速上手这一强大的机器学习工具。为什么选择XGBoost?在深入了解安装过程之前,我们先来看看XGBoost为何
- 《DeepSeek赋能工业互联网:解锁数据深度分析新姿势》
人工智能深度学习
在工业4.0与智能制造的浪潮中,工业互联网成为制造业转型升级的关键支撑。而数据,作为工业互联网的核心资产,其深度分析的质量直接影响着企业的决策准确性、生产效率与竞争力。DeepSeek,作为AI大模型领域的佼佼者,凭借独特的算法优势,为工业互联网的数据深度分析开辟了新路径,带来了前所未有的变革。精准高效的数据采集与预处理在工业场景中,设备种类繁多、数据来源广泛且格式各异。DeepSeek研发的智能
- 基于eBPF的智能诊断平台:实现云原生系统的自愈型运维体系
桂月二二
云原生运维
引言:从被动运维到预测性自愈的进化当某电商平台通过eBPF实时诊断系统提前48小时预测到MySQL集群的锁竞争风暴时,其核心是千万级指标粒度的内核状态分析与AI驱动的根因定位算法的结合。运维数据显示,该平台将平均故障恢复时间(MTTR)从23分钟压缩到71秒,并自动修复了87%的异常事件。通过动态注入修复策略,集群CPU毛刺现象减少了94%,开创了智能运维的新纪元。一、传统可观测性工具的桎梏1.1
- AI日报 - 2025年02月16日 - 推特版
訾博ZiBo
AI日报人工智能
今日概览(60秒速览)▎AGI突破|阿里巴巴发布Qwen2.5-VL视觉语言模型,支持多模态交互新模型评测榜性能提升30%▎商业动向|NVIDIABlackwell超级芯片网络研讨会将聚焦生成式AI创新预计推动算力市场增长15%▎政策追踪|印度总统宣布AI国家战略升级,聚焦半导体与算法研发计划未来3年投入50亿美元一、今日热点(HotTopic)1.1阿里巴巴发布Qwen2.5-VL系列视觉语言模
- 从零开始掌握哈夫曼树:数据压缩与Python实现详解
吴师兄大模型
python数据结构哈夫曼树哈弗曼编码数据压缩算法开发语言
系列文章目录01-从零开始掌握Python数据结构:提升代码效率的必备技能!02-算法复杂度全解析:时间与空间复杂度优化秘籍03-线性数据结构解密:数组的定义、操作与实际应用04-深入浅出链表:Python实现与应用全面解析05-栈数据结构详解:Python实现与经典应用场景06-深入理解队列数据结构:从定义到Python实现与应用场景07-双端队列(Deque)详解:Python实现与滑动窗口应
- 后量子密码学:量子安全新防线
量子信使
量子计算密码学信息与通信深度学习安全算法机器学习
目录背景主要算法介绍基于格的密码学格的概念格密码学中的难题加密和解密过程基于多变量多项式的密码学多变量多项式基础多变量多项式密码学中的难题加密和签名过程基于编码的密码学纠错码简介编码密码学中的难题加密和解密过程安全性分析传统密码学算法在量子计算环境下的安全性RSA算法的破解风险椭圆曲线密码算法的脆弱性后量子密码学算法的安全性评估基于格的密码学算法基于多变量多项式的密码学算法基于编码的密码学算法后量
- BUUCTF 逆向工程(reverse)之Java逆向解密
若丶时光破灭
CTF-逆向工程CTF逆向工程
程序员小张不小心弄丢了加密文件用的秘钥,已知还好小张曾经编写了一个秘钥验证算法,聪明的你能帮小张找到秘钥吗?注意:得到的flag请包上flag{}提交下载好题目后,发现它是个以.class为后缀的。所以用JD-GUI打开这个文件。就可以看到Java代码importjava.util.ArrayList;importjava.util.Scanner;publicclassReverse{publi
- K-means聚类:解锁数据隐藏结构的钥匙
小村学长毕业设计
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- python 快速排名发包_2019年SEO快速排名发包技术及原理 - 立金哥
weixin_39643336
python快速排名发包
百度的惊雷算法明确的说到了禁止点击排名,对点击作弊大力度的打击。但依然有不少的商家在做这类快速排名的服务,2019年SEO快速排名发包技术及原来又是怎么样来实现的呢?打击恶意点击及快速排名目前最有效果的助力网站排名的方法有两种,分别为权重转移法和点击效果法。什么是SEO快速排名发包技术?可能对于只做正规白帽手法的朋友来说,听都没听过,又或许听过但仅仅是了解却不深入。所以接下来,虎纠自媒体给大家介绍
- DeepSeek系列模型:高效能推理与多模态处理的技术突破与实践路径
张3蜂
人工智能开源技术选型人工智能开源机器人
目录引言一、高效能推理的核心技术路径二、多模态处理的技术创新三、技术协同与落地实践四、未来技术演进方向结论引言背景与挑战AI模型规模化趋势下,推理效率与多模态融合成为关键瓶颈。DeepSeek系列模型的定位:平衡性能、效率与多模态能力的技术创新者。核心命题如何通过架构设计与算法优化实现高效推理?如何突破模态边界实现跨模态语义理解与生成?一、高效能推理的核心技术路径轻量化模型架构设计动态稀疏注意力机
- 带权重的最近任务安排算法(最近面试策略)
WePlayDirty
算法面试数据结构
一个任务j在sj开始,并在fj结束;并且每个任务都有权重。任务相容:任务安排的时间没有重叠目标:找到最大权重,且相容的任务安排#includeusingnamespacestd;typedefstruct{intiStartT;intiFinshT;intiWight;}TASK_INFO;intg_i=0;voidFindSolution(TASK_INFO*schedule,int**comp
- 算法-队列-买票需要的时间
程序员南飞
算法数据结构java职场和发展leetcode
力扣题目:2073.买票需要的时间-力扣(LeetCode)有n个人前来排队买票,其中第0人站在队伍最前方,第(n-1)人站在队伍最后方。给你一个下标从0开始的整数数组tickets,数组长度为n,其中第i人想要购买的票数为tickets[i]。每个人买票都需要用掉恰好1秒。一个人一次只能买一张票,如果需要购买更多票,他必须走到队尾重新排队(瞬间发生,不计时间)。如果一个人没有剩下需要买的票,那他
- 【重温设计模式】模板方法模式及其Java示例
万猫学社
重温设计模式及其Java实现设计模式模板方法模式java
模板方法模式的基本概念模板方法模式是一种常见的设计模式,它的名字来源于其核心思想:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。听起来可能有些抽象,但其实我们在生活中经常会遇到这样的场景。比如,我们在做饭时,通常会有一套固定的流程:洗菜、切菜、炒菜。这个流程就是一个模板,而具体的做法,比如切菜的方式、炒菜的时间等,就是
- 【机器学习】半监督和无监督极限学习机SS-US-ELM附Matlab代码
默默科研仔
粉丝福利机器学习人工智能
标题:【机器学习】半监督和无监督极限学习机SS-US-ELM附Matlab代码一、引言1.1研究背景和意义概述研究的背景以及该研究在领域内的重要性。1.2研究现状分析当前领域的研究进展和存在的问题。二、极限学习机(ELM)基本原理2.1ELM的基本模型描述ELM的基本模型结构和工作原理。2.2ELM的学习过程介绍ELM的学习算法和训练过程。三、半监督极限学习机(SS-ELM)3.1SS-ELM的提
- Jieba分词算法应用
C嘎嘎嵌入式开发
算法服务器数据库c++linux
1.Jieba分词算法简介Jieba是一个用于中文分词的Python库,其核心思想是基于词典和统计模型来进行分词。由于中文文本中没有明显的单词边界,因此分词是中文处理中的一个重要任务。Jieba提供了以下几种主要的分词模式:精确模式:尽可能准确地切分句子,适合用于文本分析。全模式:将句子中所有可能的词语都切分出来,适合用于搜索引擎。搜索引擎模式:在精确模式的基础上,对长词再次切分,适合用于搜索引擎
- DeepSeek的训练与优化流程
程序猿000001号
DeepSeek训练优化
DeepSeek的训练与优化流程一、数据工程体系1.多模态数据融合处理动态数据湖架构:实时摄入互联网文本、科学论文、专利文献、传感器数据等20+数据源日均处理原始数据量达1.2PB,支持200+文件格式自动解析智能清洗流水线:基于大模型的语义去重算法,重复数据识别准确率99.6%创新应用对抗网络生成噪声数据,增强模型鲁棒性专利级数据质量评估体系(DQAS3.0)包含87个质量维度2.知识增强处理结
- 搜广推校招面经十九
Y1nhl
搜广推面经搜索引擎推荐算法python求职招聘
快手推荐算法一、1*1的cnn有什么作用?1.1.降维与通道数调整(ChannelReduction)在CNN中,特征图(FeatureMap)通常有多个通道(channels)。1×1卷积可以用于减少通道数,从而降低计算量,提高模型效率。1×1卷积可以增加通道数,以增强特征表达能力。示例代码(PyTorch):importtorchimporttorch.nnasnnconv1x1=nn.Con
- 菜鸟的成长之路
东风吹破了青花瓷
计算机数据结构与算法基础篇入门
菜鸟的成长之路基础能力数据结构与算法数据结构链表数组栈队列字典bitset树堆完全二叉树平衡二叉树二叉查找树B树红黑树lsm树图通用算法排序十种排序算法查找二分查找深度广度优先搜索分治贪心回朔动态规划网络协议OSITCP/IP状态转移拥塞控制可靠工作原理socket编程HTTP/HTTPSIO模型同步IOreactor阻塞IO非阻塞IOIO多路复用信号驱动异步IOC10K问题长链接短链接编译原理l
- 力扣hot100_矩阵_python版本
Y1nhl
力扣leetcode矩阵python
73.矩阵置零给定一个mxn的矩阵,如果一个元素为0,则将其所在行和列的所有元素都设为0。请使用原地算法。classSolution:defsetZeroes(self,matrix:List[List[int]])->None:m,n=len(matrix),len(matrix[0])row,col=[False]*m,[False]*nforiinrange(m):forjinrange(n
- 解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
紫雾凌寒
AI炼金厂机器学习算法支持向量机python深度学习分类人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Suppor
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比