1. Sort-Based Shuffle写机制源码分析
ShuffleMapTask:
核心代码
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val threadMXBean = ManagementFactory.getThreadMXBean
val deserializeStartTime = System.currentTimeMillis()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
_executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
} else 0L
var writer: ShuffleWriter[Any, Any] = null
try {
//获取对应的shuffleManager
val manager = SparkEnv.get.shuffleManager
//获取对应的shuffleWriter
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
//写入数据
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
writer.stop(success = true).get
} catch {
case e: Exception =>
try {
if (writer != null) {
writer.stop(success = false)
}
} catch {
case e: Exception =>
log.debug("Could not stop writer", e)
}
throw e
}
}
SortShuffleManager会根据策略获取shuffle
满足shouldBypassMergeSort条件的话则使用BypassMergeSortShuffleWriter
满足canUseSerializedShuffle条件的话则使用UnsafeShuffleWriter
否则使用SortShuffleWriter
/**
* Obtains a [[ShuffleHandle]] to pass to tasks.
*/
override def registerShuffle[K, V, C](
shuffleId: Int,
numMaps: Int,
dependency: ShuffleDependency[K, V, C]): ShuffleHandle = {
if (SortShuffleWriter.shouldBypassMergeSort(conf, dependency)) {
// If there are fewer than spark.shuffle.sort.bypassMergeThreshold partitions and we don't
// need map-side aggregation, then write numPartitions files directly and just concatenate
// them at the end. This avoids doing serialization and deserialization twice to merge
// together the spilled files, which would happen with the normal code path. The downside is
// having multiple files open at a time and thus more memory allocated to buffers.
new BypassMergeSortShuffleHandle[K, V](
shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])
} else if (SortShuffleManager.canUseSerializedShuffle(dependency)) {
// Otherwise, try to buffer map outputs in a serialized form, since this is more efficient:
new SerializedShuffleHandle[K, V](
shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])
} else {
// Otherwise, buffer map outputs in a deserialized form:
new BaseShuffleHandle(shuffleId, numMaps, dependency)
}
}
采用BypassMergeSortShuffleWriter
/**
* 如果不支持map端聚合即没有聚合算子的话且shuffle后的partitions的个数小于配置的参数默认200
* 则采用BypassMergeSortShuffleWriter
*/
private[spark] object SortShuffleWriter {
def shouldBypassMergeSort(conf: SparkConf, dep: ShuffleDependency[_, _, _]): Boolean = {
// We cannot bypass sorting if we need to do map-side aggregation.
if (dep.mapSideCombine) {
require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!")
false
} else {
val bypassMergeThreshold: Int = conf.getInt("spark.shuffle.sort.bypassMergeThreshold", 200)
dep.partitioner.numPartitions <= bypassMergeThreshold
}
}
}
采用UnsafeShuffleWriter
/**
* 1.Serializer 支持 relocation。Serializer 支持 relocation 是指,Serializer 可以对已经序列化的对象进行排
* 序,这种排序起到的效果和先对数据排序再序列化一致。支持 relocation 的 Serializer 是 KryoSerializer,
* Spark 默认使用 JavaSerializer,通过参数 spark.serializer 设置
* 2.没有指定 aggregation
* 3.partition 数量不能大于指定的阈值(2^24),因为 partition number 使用24bit 表示的
*/
def canUseSerializedShuffle(dependency: ShuffleDependency[_, _, _]): Boolean = {
val shufId = dependency.shuffleId
val numPartitions = dependency.partitioner.numPartitions
if (!dependency.serializer.supportsRelocationOfSerializedObjects) {
log.debug(s"Can't use serialized shuffle for shuffle $shufId because the serializer, " +
s"${dependency.serializer.getClass.getName}, does not support object relocation")
false
} else if (dependency.aggregator.isDefined) {
log.debug(
s"Can't use serialized shuffle for shuffle $shufId because an aggregator is defined")
false
} else if (numPartitions > MAX_SHUFFLE_OUTPUT_PARTITIONS_FOR_SERIALIZED_MODE) {
log.debug(s"Can't use serialized shuffle for shuffle $shufId because it has more than " +
s"$MAX_SHUFFLE_OUTPUT_PARTITIONS_FOR_SERIALIZED_MODE partitions")
false
} else {
log.debug(s"Can use serialized shuffle for shuffle $shufId")
true
}
}
a.BypassMergeSortShuffleWriter 核心写入流程
1.创建对应分区个数的DiskBlockObjectWriter和FileSegment
2.将每一个ShuffleMapTask的结果通过Partitioner进行分区,写入到对应分区的临时文件,其中Partitioner默认通过hash算法,即将key与分区数进行取余操作。而key的获取默认是通过需要聚合的表达式与分区数进行取余获取,在spark中是通过HashPartitioning类中的def partitionIdExpression: Expression = Pmod(new Murmur3Hash(expressions), Literal(numPartitions));Pmod的算法就是 左边参数对右边参数进行取余的操作
3.将分区的文件刷到磁盘文件,并且创建每一个分区文件对应的FileSegment数组
4.根据shuffleId和mapId,构建ShuffleDataBlockId,创建文件,文件格式为:shuffle_{shuffleId}{mapId}{reduceId}.data
5.将临时的分区文件合并为上述的临时文件中,并且返回每一个分区文件对应的文件长度的数组
6.创建索引index和索引临时文件,将每一个分区长度和offset写入索引文件,重命名临时data文件和临时index文件
public void write(Iterator> records) throws IOException {
assert (partitionWriters == null);
if (!records.hasNext()) {
partitionLengths = new long[numPartitions];
shuffleBlockResolver.writeIndexFileAndCommit(shuffleId, mapId, partitionLengths, null);
mapStatus = MapStatus$.MODULE$.apply(blockManager.shuffleServerId(), partitionLengths);
return;
}
final SerializerInstance serInstance = serializer.newInstance();
final long openStartTime = System.nanoTime();
/**
* 构建一个对于task结果进行分区的数量的writer数组,即每一个分区对应着一个write
* 这种写入方式,会同时打开numPartition个writer,所以分区数不宜设置过大
* 避免带来过重的内存开销。现在默认writer的缓存大小是32k,比起以前100k小太多了,适当提高此值可以减少磁盘的溢出写的次数
* this.fileBufferSize = (int) conf.getSizeAsKb("spark.shuffle.file.buffer", "32k") * 1024;
*/
partitionWriters = new DiskBlockObjectWriter[numPartitions];
partitionWriterSegments = new FileSegment[numPartitions];
for (int i = 0; i < numPartitions; i++) {
final Tuple2 tempShuffleBlockIdPlusFile =
blockManager.diskBlockManager().createTempShuffleBlock();
final File file = tempShuffleBlockIdPlusFile._2();
final BlockId blockId = tempShuffleBlockIdPlusFile._1();
partitionWriters[i] =
blockManager.getDiskWriter(blockId, file, serInstance, fileBufferSize, writeMetrics);
}
// Creating the file to write to and creating a disk writer both involve interacting with
// the disk, and can take a long time in aggregate when we open many files, so should be
// included in the shuffle write time.
writeMetrics.incWriteTime(System.nanoTime() - openStartTime);
while (records.hasNext()) {
final Product2 record = records.next();
final K key = record._1();
partitionWriters[partitioner.getPartition(key)].write(key, record._2());
}
for (int i = 0; i < numPartitions; i++) {
final DiskBlockObjectWriter writer = partitionWriters[i];
partitionWriterSegments[i] = writer.commitAndGet();
writer.close();
}
File output = shuffleBlockResolver.getDataFile(shuffleId, mapId);
File tmp = Utils.tempFileWith(output);
try {
partitionLengths = writePartitionedFile(tmp);
shuffleBlockResolver.writeIndexFileAndCommit(shuffleId, mapId, partitionLengths, tmp);
} finally {
if (tmp.exists() && !tmp.delete()) {
logger.error("Error while deleting temp file {}", tmp.getAbsolutePath());
}
}
mapStatus = MapStatus$.MODULE$.apply(blockManager.shuffleServerId(), partitionLengths);
}
合并所有的分区文件到一个正式的文件去且返回每个分区对应的文件长度信息
/**
* Concatenate all of the per-partition files into a single combined file.
* 聚合每一个分区文件为正式的Block文件
*
* @return array of lengths, in bytes, of each partition of the file (used by
* map output tracker).
*/
private long[] writePartitionedFile(File outputFile) throws IOException {
// Track location of the partition starts in the output file
// 构建一个分区数量的数组
final long[] lengths = new long[numPartitions];
if (partitionWriters == null) {
// We were passed an empty iterator
return lengths;
}
// 创建合并文件的临时文件输出流
final FileOutputStream out = new FileOutputStream(outputFile, true);
final long writeStartTime = System.nanoTime();
boolean threwException = true;
try {
// 进行分区文件的合并,返回每一个分区文件长度
for (int i = 0; i < numPartitions; i++) {
// 获取该分区对应的FileSegment对应的文件
final File file = partitionWriterSegments[i].file();
// 如果文件存在
if (file.exists()) {
final FileInputStream in = new FileInputStream(file);
boolean copyThrewException = true;
try {
// 把该文件拷贝到合并文件的临时文件,并返回文件长度
lengths[i] = Utils.copyStream(in, out, false, transferToEnabled);
copyThrewException = false;
} finally {
Closeables.close(in, copyThrewException);
}
if (!file.delete()) {
logger.error("Unable to delete file for partition {}", i);
}
}
}
threwException = false;
} finally {
Closeables.close(out, threwException);
writeMetrics.incWriteTime(System.nanoTime() - writeStartTime);
}
partitionWriters = null;
return lengths;
}
生成索引文件
/**
* 用于在Block的索引文件中记录每个block的偏移量,其中getBlockData方法可以根据ShuffleId和mapId读取索引文件,
* 获得前面partition计算之后,将结果写入文件中的偏移量和结果的大小。
*/
def writeIndexFileAndCommit(
shuffleId: Int,
mapId: Int,
lengths: Array[Long],
dataTmp: File): Unit = {
// 获取索引文件
val indexFile = getIndexFile(shuffleId, mapId)
// 生成临时的索引文件
val indexTmp = Utils.tempFileWith(indexFile)
try {
// 获取数据文件
val dataFile = getDataFile(shuffleId, mapId)
// There is only one IndexShuffleBlockResolver per executor, this synchronization make sure
// the following check and rename are atomic.
synchronized {
// 传递进去的索引、数据文件以及每一个分区的文件的长度
val existingLengths = checkIndexAndDataFile(indexFile, dataFile, lengths.length)
if (existingLengths != null) {
// Another attempt for the same task has already written our map outputs successfully,
// so just use the existing partition lengths and delete our temporary map outputs.
System.arraycopy(existingLengths, 0, lengths, 0, lengths.length)
if (dataTmp != null && dataTmp.exists()) {
dataTmp.delete()
}
} else {
// This is the first successful attempt in writing the map outputs for this task,
// so override any existing index and data files with the ones we wrote.
val out = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(indexTmp)))
Utils.tryWithSafeFinally {
// We take in lengths of each block, need to convert it to offsets.
// 将offset写入索引文件写入临时的索引文件
var offset = 0L
out.writeLong(offset)
for (length <- lengths) {
offset += length
out.writeLong(offset)
}
} {
out.close()
}
if (indexFile.exists()) {
indexFile.delete()
}
if (dataFile.exists()) {
dataFile.delete()
}
if (!indexTmp.renameTo(indexFile)) {
throw new IOException("fail to rename file " + indexTmp + " to " + indexFile)
}
if (dataTmp != null && dataTmp.exists() && !dataTmp.renameTo(dataFile)) {
throw new IOException("fail to rename file " + dataTmp + " to " + dataFile)
}
}
}
} finally {
if (indexTmp.exists() && !indexTmp.delete()) {
logError(s"Failed to delete temporary index file at ${indexTmp.getAbsolutePath}")
}
}
}
核心流程
b.SortShuffleWriter
1.创建外部排序器
2.根据是否需要在map端进行聚合,来创建PartitionedAppendOnlyMap还是PartitionedPairBuffer来存储数据,如果需要聚合使用PartitionedAppendOnlyMap,否则使用PartitionedPairBuffer添加数据存放在内存中。
3.将数据全部放入外部排序器,并根据是否需要spill进行spill操作
4.创建data文件,格式为'shuffle_{shuffleId}{mapId}{reducerId}.data和data临时文件,先将数据写入临时data 文件
5.合并排序后生成的各个溢出写文件和内存中还有的数据,并生成每个分区对应的文件长度数组
6.创建index索引文件和临时index文件,写入每一个分区的offset以及length信息等,并且重命名data临时文件和index临时文件
/** Write a bunch of records to this task's output */
override def write(records: Iterator[Product2[K, V]]): Unit = {
//是否map端需要在本地进行combine操作,如果需要,则需要传入aggregator和keyOrdering,创建ExternalSorter
sorter = if (dep.mapSideCombine) {
require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!")
new ExternalSorter[K, V, C](
context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)
} else {
// In this case we pass neither an aggregator nor an ordering to the sorter, because we don't
// care whether the keys get sorted in each partition; that will be done on the reduce side
// if the operation being run is sortByKey.
//如果不需要在本地进行combine操作, 就不需要aggregator和keyOrdering,那么本地每个分区的数据不会做聚合和排序
new ExternalSorter[K, V, V](
context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer)
}
//将数据全部放入排序器中,若排序计算超出阀值则将其溢写到磁盘数据文件
sorter.insertAll(records)
// Don't bother including the time to open the merged output file in the shuffle write time,
// because it just opens a single file, so is typically too fast to measure accurately
// (see SPARK-3570).
// 创建data文件,文件格式:shuffle_{shuffleId}_{mapId}_{reducerId}.data
val output = shuffleBlockResolver.getDataFile(dep.shuffleId, mapId)
// 创建data文件的临时文件
val tmp = Utils.tempFileWith(output)
try {
val blockId = ShuffleBlockId(dep.shuffleId, mapId, IndexShuffleBlockResolver.NOOP_REDUCE_ID)
//将溢出写的多个文件和还在内存中的数据,合并成一个大文件,并且返回每个分区对应的文件长度
val partitionLengths = sorter.writePartitionedFile(blockId, tmp)
shuffleBlockResolver.writeIndexFileAndCommit(dep.shuffleId, mapId, partitionLengths, tmp)
mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths)
} finally {
if (tmp.exists() && !tmp.delete()) {
logError(s"Error while deleting temp file ${tmp.getAbsolutePath}")
}
}
}
写入数据
/**
* 1.判断是否需要合并即是否是聚合类算子
* 2. 不是的话遍历数据,对key进行分区,直接往PartitionedPairBuffer写入数据,然后判断是否需要溢出写
* 3. 是的话,获取聚合器的merge函数,用于merge值,mergeValue是个函数定义,如 val rdd3 =
* rdd2.reduceByKey(_ + _);中的 _+_运算
* 4. 获取aggregator的createCombiner函数,用于创建聚合的初始值
* 5. 遍历数据,对key计算分区,然后开始进行merge,然后判断是否需要溢出写
*/
def insertAll(records: Iterator[Product2[K, V]]): Unit = {
// TODO: stop combining if we find that the reduction factor isn't high
val shouldCombine = aggregator.isDefined
if (shouldCombine) {
// Combine values in-memory first using our AppendOnlyMap
val mergeValue = aggregator.get.mergeValue
val createCombiner = aggregator.get.createCombiner
var kv: Product2[K, V] = null
//此Update方法就是用来meger数据,如果旧值存在则merge,否则就调用createCombiner原样输出值
val update = (hadValue: Boolean, oldValue: C) => {
if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)
}
while (records.hasNext) {
addElementsRead()
kv = records.next()
map.changeValue((getPartition(kv._1), kv._1), update)
maybeSpillCollection(usingMap = true)
}
} else {
// Stick values into our buffer
while (records.hasNext) {
addElementsRead()
val kv = records.next()
buffer.insert(getPartition(kv._1), kv._1, kv._2.asInstanceOf[C])
maybeSpillCollection(usingMap = false)
}
}
}
1. AppendOnlyMap更新合并数据
关于AppendOnlyMap中是用一个数组来存放数据的,数组的大小为2倍的capacity大小,这个数组既存放key也存放value.一条数据在data中存放的格式为 (parititonId,key),value,因此数组大小是2倍的capacity,初始值为64,乘以2后即128,扩容因子为0.7。即当数据大于44条的时候就要执行扩容操作
/**
* Set the value for key to updateFunc(hadValue, oldValue), where oldValue will be the old value
* for key, if any, or null otherwise. Returns the newly updated value.
*/
def changeValue(key: K, updateFunc: (Boolean, V) => V): V = {
assert(!destroyed, destructionMessage)
val k = key.asInstanceOf[AnyRef]
if (k.eq(null)) {
if (!haveNullValue) {
incrementSize()
}
nullValue = updateFunc(haveNullValue, nullValue)
haveNullValue = true
return nullValue
}
//对key rehash计算在这个数据结构中的位置
var pos = rehash(k.hashCode) & mask
var i = 1
while (true) {
val curKey = data(2 * pos)
if (curKey.eq(null)) {
val newValue = updateFunc(false, null.asInstanceOf[V])
data(2 * pos) = k
data(2 * pos + 1) = newValue.asInstanceOf[AnyRef]
incrementSize()
return newValue
} else if (k.eq(curKey) || k.equals(curKey)) {
//当前key存在,则进行数据merge操作
val newValue = updateFunc(true, data(2 * pos + 1).asInstanceOf[V])
data(2 * pos + 1) = newValue.asInstanceOf[AnyRef]
return newValue
} else {
val delta = i
pos = (pos + delta) & mask
i += 1
}
}
null.asInstanceOf[V] // Never reached but needed to keep compiler happy
}
2. PartitionedPairBuffer写入数据
除了不需要合并,其余流程与AppendOnlyMap一致
/** Add an element into the buffer */
def insert(partition: Int, key: K, value: V): Unit = {
if (curSize == capacity) {
growArray()
}
data(2 * curSize) = (partition, key.asInstanceOf[AnyRef])
data(2 * curSize + 1) = value.asInstanceOf[AnyRef]
curSize += 1
afterUpdate()
}
3. 溢出写
1.如果使用map,则计算当前Map的大小,否则计算buffer的大小
2.判断是否需要溢出写
3.是的话,溢出写,且重新创建一个map或者buffer的对象存放数据,进行下一轮数据读取存放
/**
* Spill the current in-memory collection to disk if needed.
*
* @param usingMap whether we're using a map or buffer as our current in-memory collection
*/
private def maybeSpillCollection(usingMap: Boolean): Unit = {
var estimatedSize = 0L
if (usingMap) {
estimatedSize = map.estimateSize()
if (maybeSpill(map, estimatedSize)) {
map = new PartitionedAppendOnlyMap[K, C]
}
} else {
estimatedSize = buffer.estimateSize()
if (maybeSpill(buffer, estimatedSize)) {
buffer = new PartitionedPairBuffer[K, C]
}
}
if (estimatedSize > _peakMemoryUsedBytes) {
_peakMemoryUsedBytes = estimatedSize
}
}
maybeSpill()方法,判断是否需要溢写磁盘,如果需要则开始溢写
1.如果读取的数据是32的倍数,且当前需要的内存大于阀值的时候。阀值由SparkEnv.get.conf.getLong("spark.shuffle.spill.initialMemoryThreshold", 5 * 1024 * 1024)设定,默认5M
2.满足条件的话,尝试申请 2 * currentMemory - myMemoryThreshold内存,将阀值与申请到的内存相加与当前内存比较大小,仍旧小于当前值则溢写
3.再次判断是否需要溢出写,需要则只需溢写,并释放内存
/**
* Spills the current in-memory collection to disk if needed. Attempts to acquire more
* memory before spilling.
*
* @param collection collection to spill to disk
* @param currentMemory estimated size of the collection in bytes
* @return true if `collection` was spilled to disk; false otherwise
*/
protected def maybeSpill(collection: C, currentMemory: Long): Boolean = {
var shouldSpill = false
if (elementsRead % 32 == 0 && currentMemory >= myMemoryThreshold) {
// Claim up to double our current memory from the shuffle memory pool
val amountToRequest = 2 * currentMemory - myMemoryThreshold
val granted = acquireMemory(amountToRequest)
myMemoryThreshold += granted
// If we were granted too little memory to grow further (either tryToAcquire returned 0,
// or we already had more memory than myMemoryThreshold), spill the current collection
shouldSpill = currentMemory >= myMemoryThreshold
}
// 强制溢写阈值可以通过在SparkConf中设置spark.shuffle.spill.batchSize来控制
shouldSpill = shouldSpill || _elementsRead > numElementsForceSpillThreshold
// Actually spill
if (shouldSpill) {
_spillCount += 1
logSpillage(currentMemory)
spill(collection)
_elementsRead = 0
_memoryBytesSpilled += currentMemory
releaseMemory()
}
shouldSpill
}
spill()方法,溢写磁盘
/**
* Spill our in-memory collection to a sorted file that we can merge later.
* We add this file into `spilledFiles` to find it later.
*
* @param collection whichever collection we're using (map or buffer)
* 溢写磁盘
* 1.返回一个根据指定的比较器排序的迭代器
* 2.溢写内存里的数据到磁盘一个临时文件
* 3.更新溢写的临时磁盘文件
*
*/
override protected[this] def spill(collection: WritablePartitionedPairCollection[K, C]): Unit = {
// 返回一个根据指定的比较器排序的迭代器
val inMemoryIterator = collection.destructiveSortedWritablePartitionedIterator(comparator)
// 溢写内存里的数据到磁盘一个临时文件
val spillFile = spillMemoryIteratorToDisk(inMemoryIterator)
// 更新溢写的临时磁盘文件
spills += spillFile
}
1.这里会根据是map还是buffer获取同的排序迭代器
2.而溢出写的执行writeNext就是调用此方法
/**
* Iterate through the data and write out the elements instead of returning them. Records are
* returned in order of their partition ID and then the given comparator.
* This may destroy the underlying collection.
*/
def destructiveSortedWritablePartitionedIterator(keyComparator: Option[Comparator[K]])
: WritablePartitionedIterator = {
val it = partitionedDestructiveSortedIterator(keyComparator)
new WritablePartitionedIterator {
private[this] var cur = if (it.hasNext) it.next() else null
def writeNext(writer: DiskBlockObjectWriter): Unit = {
writer.write(cur._1._2, cur._2)
cur = if (it.hasNext) it.next() else null
}
def hasNext(): Boolean = cur != null
def nextPartition(): Int = cur._1._1
}
}
partitionedDestructiveSortedIterator(keyComparator)是map,具体的实现为(PartitionedAppendOnlyMap)
排序的逻辑就是根据parittionID,再根据K的hashcode进行排序
def partitionedDestructiveSortedIterator(keyComparator: Option[Comparator[K]])
: Iterator[((Int, K), V)] = {
val comparator = keyComparator.map(partitionKeyComparator).getOrElse(partitionComparator)
destructiveSortedIterator(comparator)
}
/**
* Return an iterator of the map in sorted order. This provides a way to sort the map without
* using additional memory, at the expense of destroying the validity of the map.
*/
def destructiveSortedIterator(keyComparator: Comparator[K]): Iterator[(K, V)] = {
destroyed = true
// Pack KV pairs into the front of the underlying array
var keyIndex, newIndex = 0
while (keyIndex < capacity) {
if (data(2 * keyIndex) != null) {
data(2 * newIndex) = data(2 * keyIndex)
data(2 * newIndex + 1) = data(2 * keyIndex + 1)
newIndex += 1
}
keyIndex += 1
}
assert(curSize == newIndex + (if (haveNullValue) 1 else 0))
new Sorter(new KVArraySortDataFormat[K, AnyRef]).sort(data, 0, newIndex, keyComparator)
new Iterator[(K, V)] {
var i = 0
var nullValueReady = haveNullValue
def hasNext: Boolean = (i < newIndex || nullValueReady)
def next(): (K, V) = {
if (nullValueReady) {
nullValueReady = false
(null.asInstanceOf[K], nullValue)
} else {
val item = (data(2 * i).asInstanceOf[K], data(2 * i + 1).asInstanceOf[V])
i += 1
item
}
}
}
}
先比较partitionID,一样的话再比较K的大小
/**
* A comparator for (Int, K) pairs that orders them both by their partition ID and a key ordering.
*/
def partitionKeyComparator[K](keyComparator: Comparator[K]): Comparator[(Int, K)] = {
new Comparator[(Int, K)] {
override def compare(a: (Int, K), b: (Int, K)): Int = {
val partitionDiff = a._1 - b._1
if (partitionDiff != 0) {
partitionDiff
} else {
keyComparator.compare(a._2, b._2)
}
}
}
}
private val keyComparator: Comparator[K] = ordering.getOrElse(new Comparator[K] {
override def compare(a: K, b: K): Int = {
val h1 = if (a == null) 0 else a.hashCode()
val h2 = if (b == null) 0 else b.hashCode()
if (h1 < h2) -1 else if (h1 == h2) 0 else 1
}
})
partitionedDestructiveSortedIterator(keyComparator)是buffer,具体的实现为(PartitionedPairBuffer):由于它不是map,因此它只需要进行partition排序,partition内部无序
/** Iterate through the data in a given order. For this class this is not really destructive. */
override def partitionedDestructiveSortedIterator(keyComparator: Option[Comparator[K]])
: Iterator[((Int, K), V)] = {
val comparator = keyComparator.map(partitionKeyComparator).getOrElse(partitionComparator)
//timSort.sort(a, lo, hi, c)
new Sorter(new KVArraySortDataFormat[(Int, K), AnyRef]).sort(data, 0, curSize, comparator)
iterator
}
溢写内存里的数据到磁盘一个临时文件
1.创建临时的blockId(temp_shuffle_" + uuid)和文件
2.为临时文件创建DiskBlockObjectWriter
3.循环读取内存里的数据,将数据写入文件
4.将数据flush到磁盘
5.创建spilledFile,返回
/**
* Spill contents of in-memory iterator to a temporary file on disk.
*/
private[this] def spillMemoryIteratorToDisk(inMemoryIterator: WritablePartitionedIterator)
: SpilledFile = {
// Because these files may be read during shuffle, their compression must be controlled by
// spark.shuffle.compress instead of spark.shuffle.spill.compress, so we need to use
// createTempShuffleBlock here; see SPARK-3426 for more context.
val (blockId, file) = diskBlockManager.createTempShuffleBlock()
// These variables are reset after each flush
var objectsWritten: Long = 0
val spillMetrics: ShuffleWriteMetrics = new ShuffleWriteMetrics
val writer: DiskBlockObjectWriter =
blockManager.getDiskWriter(blockId, file, serInstance, fileBufferSize, spillMetrics)
// List of batch sizes (bytes) in the order they are written to disk
val batchSizes = new ArrayBuffer[Long]
// How many elements we have in each partition
val elementsPerPartition = new Array[Long](numPartitions)
// Flush the disk writer's contents to disk, and update relevant variables.
// The writer is committed at the end of this process.
def flush(): Unit = {
val segment = writer.commitAndGet()
batchSizes += segment.length
_diskBytesSpilled += segment.length
objectsWritten = 0
}
var success = false
try {
while (inMemoryIterator.hasNext) {
val partitionId = inMemoryIterator.nextPartition()
require(partitionId >= 0 && partitionId < numPartitions,
s"partition Id: ${partitionId} should be in the range [0, ${numPartitions})")
inMemoryIterator.writeNext(writer)
elementsPerPartition(partitionId) += 1
objectsWritten += 1
if (objectsWritten == serializerBatchSize) {
flush()
}
}
if (objectsWritten > 0) {
flush()
} else {
writer.revertPartialWritesAndClose()
}
success = true
} finally {
if (success) {
writer.close()
} else {
// This code path only happens if an exception was thrown above before we set success;
// close our stuff and let the exception be thrown further
writer.revertPartialWritesAndClose()
if (file.exists()) {
if (!file.delete()) {
logWarning(s"Error deleting ${file}")
}
}
}
}
SpilledFile(file, blockId, batchSizes.toArray, elementsPerPartition)
}
如果溢出写,就需要对溢出写的文件进行归并排序,否则只需要对内存数据排序写到data文件
/**
* Write all the data added into this ExternalSorter into a file in the disk store. This is
* called by the SortShuffleWriter.
*
* @param blockId block ID to write to. The index file will be blockId.name + ".index".
* @return array of lengths, in bytes, of each partition of the file (used by map output tracker)
*/
def writePartitionedFile(
blockId: BlockId,
outputFile: File): Array[Long] = {
// Track location of each range in the output file
val lengths = new Array[Long](numPartitions)
val writer = blockManager.getDiskWriter(blockId, outputFile, serInstance, fileBufferSize,
context.taskMetrics().shuffleWriteMetrics)
if (spills.isEmpty) { //没有溢出写,则只需对内存中的数据排序
// Case where we only have in-memory data
val collection = if (aggregator.isDefined) map else buffer
val it = collection.destructiveSortedWritablePartitionedIterator(comparator)
while (it.hasNext) {
val partitionId = it.nextPartition()
while (it.hasNext && it.nextPartition() == partitionId) {
it.writeNext(writer)
}
val segment = writer.commitAndGet()
lengths(partitionId) = segment.length
}
} else {
//对多个溢出写文件进行归并排序
// We must perform merge-sort; get an iterator by partition and write everything directly.
for ((id, elements) <- this.partitionedIterator) {
if (elements.hasNext) {
for (elem <- elements) {
writer.write(elem._1, elem._2)
}
val segment = writer.commitAndGet()
lengths(id) = segment.length
}
}
}
writer.close()
context.taskMetrics().incMemoryBytesSpilled(memoryBytesSpilled)
context.taskMetrics().incDiskBytesSpilled(diskBytesSpilled)
context.taskMetrics().incPeakExecutionMemory(peakMemoryUsedBytes)
lengths
}
/**
* Return an iterator over all the data written to this object, grouped by partition and
* aggregated by the requested aggregator. For each partition we then have an iterator over its
* contents, and these are expected to be accessed in order (you can't "skip ahead" to one
* partition without reading the previous one). Guaranteed to return a key-value pair for each
* partition, in order of partition ID.
*
* For now, we just merge all the spilled files in once pass, but this can be modified to
* support hierarchical merging.
* Exposed for testing.
*/
def partitionedIterator: Iterator[(Int, Iterator[Product2[K, C]])] = {
val usingMap = aggregator.isDefined
val collection: WritablePartitionedPairCollection[K, C] = if (usingMap) map else buffer
if (spills.isEmpty) {
// Special case: if we have only in-memory data, we don't need to merge streams, and perhaps
// we don't even need to sort by anything other than partition ID
if (!ordering.isDefined) {
// The user hasn't requested sorted keys, so only sort by partition ID, not key
groupByPartition(destructiveIterator(collection.partitionedDestructiveSortedIterator(None)))
} else {
// We do need to sort by both partition ID and key
groupByPartition(destructiveIterator(
collection.partitionedDestructiveSortedIterator(Some(keyComparator))))
}
} else {
// Merge spilled and in-memory data
merge(spills, destructiveIterator(
collection.partitionedDestructiveSortedIterator(comparator)))
}
}
归并排序
/**
* Merge a sequence of sorted files, giving an iterator over partitions and then over elements
* inside each partition. This can be used to either write out a new file or return data to
* the user.
*
* Returns an iterator over all the data written to this object, grouped by partition. For each
* partition we then have an iterator over its contents, and these are expected to be accessed
* in order (you can't "skip ahead" to one partition without reading the previous one).
* Guaranteed to return a key-value pair for each partition, in order of partition ID.
*/
private def merge(spills: Seq[SpilledFile], inMemory: Iterator[((Int, K), C)])
: Iterator[(Int, Iterator[Product2[K, C]])] = {
val readers = spills.map(new SpillReader(_))
val inMemBuffered = inMemory.buffered
(0 until numPartitions).iterator.map { p =>
val inMemIterator = new IteratorForPartition(p, inMemBuffered)
val iterators = readers.map(_.readNextPartition()) ++ Seq(inMemIterator)
if (aggregator.isDefined) {
// Perform partial aggregation across partitions
(p, mergeWithAggregation(
iterators, aggregator.get.mergeCombiners, keyComparator, ordering.isDefined))
} else if (ordering.isDefined) {
// No aggregator given, but we have an ordering (e.g. used by reduce tasks in sortByKey);
// sort the elements without trying to merge them
(p, mergeSort(iterators, ordering.get))
} else {
(p, iterators.iterator.flatten)
}
}
}
流程图
2. Sort-Based Shuffle读机制源码分析
假设我们执行了reduceByKey算子,那么生成的RDD的就是ShuffledRDD,下游在运行任务的时候,则需要获取上游ShuffledRDD的数据,所以ShuffledRDD的compute方法是Shuffle读的起点。
下游的ReducerTask,可能是ShuffleMapTask也有可能是ResultTask,首先会去Driver获取parent stage中ShuffleMapTask输出的位置信息,根据位置信息获取index文件,然后解析index文件,从index文件中获取相关的位置等信息,然后读data文件获取属于自己那部分内容。
reduceTask会执行compute方法,负责拉去此任务下的partition数据
override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
.read()
.asInstanceOf[Iterator[(K, C)]]
}
调用BlockStoreShuffleReader的read方法开始读取数据
1.创建一个获取数据ShuffleBlockFetcherIterator的迭代器,它会获取多个块数据,有本地的,也有远程的
/** Read the combined key-values for this reduce task */
override def read(): Iterator[Product2[K, C]] = {
val wrappedStreams = new ShuffleBlockFetcherIterator(
context,
blockManager.shuffleClient, //获取远程数据块
blockManager, //获取本地数据块
//通过消息发送获取 ShuffleMapTask 存储此partition数据位置的元数据,MapOutputTracker在SparkEnv启动的时候实例化
mapOutputTracker.getMapSizesByExecutorId(handle.shuffleId, startPartition, endPartition),
serializerManager.wrapStream,//对数据流进行压缩和加密的相关处理
// Note: we use getSizeAsMb when no suffix is provided for backwards compatibility
//正在获取的最大远程数据量48M
SparkEnv.get.conf.getSizeAsMb("spark.reducer.maxSizeInFlight", "48m") * 1024 * 1024,
//最大请求数目
SparkEnv.get.conf.getInt("spark.reducer.maxReqsInFlight", Int.MaxValue),
//每个地址正在获取的数据块数目最大值
SparkEnv.get.conf.get(config.REDUCER_MAX_BLOCKS_IN_FLIGHT_PER_ADDRESS),
//shuffle数据存储到内存的最大字节
SparkEnv.get.conf.get(config.MAX_REMOTE_BLOCK_SIZE_FETCH_TO_MEM),
//检测获取块中的损坏
SparkEnv.get.conf.getBoolean("spark.shuffle.detectCorrupt", true))
// 获取序列化实例
val serializerInstance = dep.serializer.newInstance()
// Create a key/value iterator for each stream
val recordIter = wrappedStreams.flatMap { case (blockId, wrappedStream) =>
// Note: the asKeyValueIterator below wraps a key/value iterator inside of a
// NextIterator. The NextIterator makes sure that close() is called on the
// underlying InputStream when all records have been read.
serializerInstance.deserializeStream(wrappedStream).asKeyValueIterator
}
// Update the context task metrics for each record read.
// 度量每一条记录
val readMetrics = context.taskMetrics.createTempShuffleReadMetrics()
val metricIter = CompletionIterator[(Any, Any), Iterator[(Any, Any)]](
recordIter.map { record =>
readMetrics.incRecordsRead(1)
record
},
context.taskMetrics().mergeShuffleReadMetrics())
// An interruptible iterator must be used here in order to support task cancellation
//可中断的迭代器,为了支持任务取消
val interruptibleIter = new InterruptibleIterator[(Any, Any)](context, metricIter)
val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) {
if (dep.mapSideCombine) {// 如果map端已经聚合过了
// We are reading values that are already combined
//则对读取到的聚合结果进行聚合
val combinedKeyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, C)]]
// 针对map端各个partition对key进行聚合后的结果再次聚合
dep.aggregator.get.combineCombinersByKey(combinedKeyValuesIterator, context)
} else {
// We don't know the value type, but also don't care -- the dependency *should*
// have made sure its compatible w/ this aggregator, which will convert the value
// type to the combined type C
// 如果map端没有聚合,则针对未合并的进行聚合
val keyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, Nothing)]]
dep.aggregator.get.combineValuesByKey(keyValuesIterator, context)
}
} else {
require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!")
interruptibleIter.asInstanceOf[Iterator[Product2[K, C]]]
}
// Sort the output if there is a sort ordering defined.
/**
* 如果需要对key排序,则进行排序。基于sort的shuffle实现过程中,默认只是按照partitionId排序
* 在每一个partition内部并没有排序,因此添加了keyOrdering变量,提供是否需要对分区内部的key排序
*/
val resultIter = dep.keyOrdering match {
case Some(keyOrd: Ordering[K]) =>
// Create an ExternalSorter to sort the data.
//// 为了减少内存压力和避免GC开销,引入了外部排序器,当内存不足时会根据配置文件spark.shuffle.spill决定是否进行spill操作
val sorter =
new ExternalSorter[K, C, C](context, ordering = Some(keyOrd), serializer = dep.serializer)
sorter.insertAll(aggregatedIter)
context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled)
context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled)
context.taskMetrics().incPeakExecutionMemory(sorter.peakMemoryUsedBytes)
// Use completion callback to stop sorter if task was finished/cancelled.
context.addTaskCompletionListener(_ => {
sorter.stop()
})
CompletionIterator[Product2[K, C], Iterator[Product2[K, C]]](sorter.iterator, sorter.stop())
case None =>
//不需要排序直接返回
aggregatedIter
}
resultIter match {
case _: InterruptibleIterator[Product2[K, C]] => resultIter
case _ =>
// Use another interruptible iterator here to support task cancellation as aggregator
// or(and) sorter may have consumed previous interruptible iterator.
new InterruptibleIterator[Product2[K, C]](context, resultIter)
}
}
通过MapOutputTracker的getMapSizesByExecutorId去获取MapStatus
override def getMapSizesByExecutorId(shuffleId: Int, startPartition: Int, endPartition: Int)
: Iterator[(BlockManagerId, Seq[(BlockId, Long)])] = {
logDebug(s"Fetching outputs for shuffle $shuffleId, partitions $startPartition-$endPartition")
// 获得Map阶段输出的中间计算结果的元数据信息
val statuses = getStatuses(shuffleId)
try {
// 将获得的元数据信息转化成形如Seq[(BlockManagerId, Seq[(BlockId, Long)])]格式的位置信息,用来读取指定的Map阶段产生的数据
MapOutputTracker.convertMapStatuses(shuffleId, startPartition, endPartition, statuses)
} catch {
case e: MetadataFetchFailedException =>
// We experienced a fetch failure so our mapStatuses cache is outdated; clear it:
mapStatuses.clear()
throw e
}
}
getStatuses(shuffleId)来获取元数据信息的
/**
* Get or fetch the array of MapStatuses for a given shuffle ID. NOTE: clients MUST synchronize
* on this array when reading it, because on the driver, we may be changing it in place.
* 获取元数据信息
* (It would be nice to remove this restriction in the future.)
*/
private def getStatuses(shuffleId: Int): Array[MapStatus] = {
// 根据shuffleId获得MapStatus组成的数组:Array[MapStatus]
val statuses = mapStatuses.get(shuffleId).orNull
if (statuses == null) { // 如果没有获取到就进行fetch操作
logInfo("Don't have map outputs for shuffle " + shuffleId + ", fetching them")
val startTime = System.currentTimeMillis
// 用来保存fetch来的MapStatus
var fetchedStatuses: Array[MapStatus] = null
fetching.synchronized { // 有可能有别的任务正在进行fetch,所以这里使用synchronized关键字保证同步
// Someone else is fetching it; wait for them to be done
while (fetching.contains(shuffleId)) {
try {
fetching.wait()
} catch {
case e: InterruptedException =>
}
}
// Either while we waited the fetch happened successfully, or
// someone fetched it in between the get and the fetching.synchronized.
// 等待过后继续尝试获取
fetchedStatuses = mapStatuses.get(shuffleId).orNull
if (fetchedStatuses == null) {
// We have to do the fetch, get others to wait for us.
fetching += shuffleId
}
}
// 如果得到了fetch的权利就进行抓取
if (fetchedStatuses == null) {
// We won the race to fetch the statuses; do so
logInfo("Doing the fetch; tracker endpoint = " + trackerEndpoint)
// This try-finally prevents hangs due to timeouts:
try {
// 调用askTracker方法发送消息,消息的格式为GetMapOutputStatuses(shuffleId)
val fetchedBytes = askTracker[Array[Byte]](GetMapOutputStatuses(shuffleId))
// 将得到的序列化后的数据进行反序列化
fetchedStatuses = MapOutputTracker.deserializeMapStatuses(fetchedBytes)
logInfo("Got the output locations")
// 保存到本地的mapStatuses中
mapStatuses.put(shuffleId, fetchedStatuses)
} finally {
fetching.synchronized {
fetching -= shuffleId
fetching.notifyAll()
}
}
}
logDebug(s"Fetching map output statuses for shuffle $shuffleId took " +
s"${System.currentTimeMillis - startTime} ms")
if (fetchedStatuses != null) {
// 最后将抓取到的元数据信息返回
fetchedStatuses
} else {
logError("Missing all output locations for shuffle " + shuffleId)
throw new MetadataFetchFailedException(
shuffleId, -1, "Missing all output locations for shuffle " + shuffleId)
}
} else {
// 如果获取到了Array[MapStatus]就直接返回
statuses
}
}
发送消息的askTracker方法,发送的消息是一个GetMapOutputStatuses(shuffleId)
protected def askTracker[T: ClassTag](message: Any): T = {
try {
trackerEndpoint.askSync[T](message)
} catch {
case e: Exception =>
logError("Error communicating with MapOutputTracker", e)
throw new SparkException("Error communicating with MapOutputTracker", e)
}
}
MapOutputTrackerMasterEndpoint在接收到该消息后的处理:
private[spark] class MapOutputTrackerMasterEndpoint(
override val rpcEnv: RpcEnv, tracker: MapOutputTrackerMaster, conf: SparkConf)
extends RpcEndpoint with Logging {
logDebug("init") // force eager creation of logger
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case GetMapOutputStatuses(shuffleId: Int) =>
val hostPort = context.senderAddress.hostPort
logInfo("Asked to send map output locations for shuffle " + shuffleId + " to " + hostPort)
// 获得Map阶段的输出数据的序列化后的元数据信息
val mapOutputStatuses = tracker.post(new GetMapOutputMessage(shuffleId, context))
case StopMapOutputTracker =>
logInfo("MapOutputTrackerMasterEndpoint stopped!")
context.reply(true)
stop()
}
}
tracker.post(new GetMapOutputMessage(shuffleId, context))的处理:
private val mapOutputRequests = new LinkedBlockingQueue[GetMapOutputMessage]
......
def post(message: GetMapOutputMessage): Unit = {
//增加队列中
mapOutputRequests.offer(message)
}
private class MessageLoop extends Runnable {
override def run(): Unit = {
try {
while (true) {
try {
val data = mapOutputRequests.take()
if (data == PoisonPill) {
// Put PoisonPill back so that other MessageLoops can see it.
mapOutputRequests.offer(PoisonPill)
return
}
val context = data.context
val shuffleId = data.shuffleId
val hostPort = context.senderAddress.hostPort
logDebug("Handling request to send map output locations for shuffle " + shuffleId +
" to " + hostPort)
val shuffleStatus = shuffleStatuses.get(shuffleId).head
//获得的元数据信息返回
context.reply(
shuffleStatus.serializedMapStatus(broadcastManager, isLocal, minSizeForBroadcast))
} catch {
case NonFatal(e) => logError(e.getMessage, e)
}
}
} catch {
case ie: InterruptedException => // exit
}
}
}
序列反元数据信息
def serializedMapStatus(
broadcastManager: BroadcastManager,
isLocal: Boolean,
minBroadcastSize: Int): Array[Byte] = synchronized {
if (cachedSerializedMapStatus eq null) {
val serResult = MapOutputTracker.serializeMapStatuses(
mapStatuses, broadcastManager, isLocal, minBroadcastSize)
// 缓存操作
cachedSerializedMapStatus = serResult._1
cachedSerializedBroadcast = serResult._2
}
cachedSerializedMapStatus
}
ShuffleBlockFetcherIterator在初始化时会调用initialize方法
private[this] def initialize(): Unit = {
// Add a task completion callback (called in both success case and failure case) to cleanup.
// 任务完成时回调,用于清空数据
context.addTaskCompletionListener[Unit](_ => cleanup())
// Split local and remote blocks.
// 区分本地和远程数据块
val remoteRequests = splitLocalRemoteBlocks()
// Add the remote requests into our queue in a random order
// 将远程数据块请求乱序添加到请求队列中
fetchRequests ++= Utils.randomize(remoteRequests)
assert ((0 == reqsInFlight) == (0 == bytesInFlight),
"expected reqsInFlight = 0 but found reqsInFlight = " + reqsInFlight +
", expected bytesInFlight = 0 but found bytesInFlight = " + bytesInFlight)
// Send out initial requests for blocks, up to our maxBytesInFlight
//发送请求,确保请求的数据量不超过maxBytesInFlight
fetchUpToMaxBytes()
//部分数据块请求已经开始处理
val numFetches = remoteRequests.size - fetchRequests.size
logInfo("Started " + numFetches + " remote fetches in" + Utils.getUsedTimeMs(startTime))
// Get Local Blocks
//获取本地数据块,内部通过IndexShuffleBlockResolver.getBlockData方法
//然后构造一个SuccessFetchResult添加到结果记录队列results中
fetchLocalBlocks()
logDebug("Got local blocks in " + Utils.getUsedTimeMs(startTime))
}
splitLocalRemoteBlocks() 区分本地和远程数据块,将远程数据块封装为FetchRequest数组
/**
* A request to fetch blocks from a remote BlockManager.
* @param address remote BlockManager to fetch from.
* @param blocks Sequence of tuple, where the first element is the block id,
* and the second element is the estimated size, used to calculate bytesInFlight.
* 计算返回远程块的数据大小总和
*/
case class FetchRequest(address: BlockManagerId, blocks: Seq[(BlockId, Long)]) {
val size = blocks.map(_._2).sum
}
/**
* 将远程数据块封装为FetchRequest数组
*/
private[this] def splitLocalRemoteBlocks(): ArrayBuffer[FetchRequest] = {
// Make remote requests at most maxBytesInFlight / 5 in length; the reason to keep them
// smaller than maxBytesInFlight is to allow multiple, parallel fetches from up to 5
// nodes, rather than blocking on reading output from one node.
// 实际请求数据时大小为最大值的1/5,可以从5个节点并行的获取数据,避免阻塞到一个节点上
val targetRequestSize = math.max(maxBytesInFlight / 5, 1L)
logDebug("maxBytesInFlight: " + maxBytesInFlight + ", targetRequestSize: " + targetRequestSize
+ ", maxBlocksInFlightPerAddress: " + maxBlocksInFlightPerAddress)
// Split local and remote blocks. Remote blocks are further split into FetchRequests of size
// at most maxBytesInFlight in order to limit the amount of data in flight.
// 远程数据块会被分成过个FetchRequests,避免超过最大正在传输数据量的限制,算出所有FetchRequests的block的数据大小,然后申请相应大小的remoteRequests
val remoteRequests = new ArrayBuffer[FetchRequest]
// Tracks total number of blocks (including zero sized blocks)
// 获取所有块的数目,包括大小为0的块
var totalBlocks = 0
for ((address, blockInfos) <- blocksByAddress) {
totalBlocks += blockInfos.size
//blockManager位于同一个executor,为本地数据块
if (address.executorId == blockManager.blockManagerId.executorId) {
// Filter out zero-sized blocks 过滤大小为0的块
localBlocks ++= blockInfos.filter(_._2 != 0).map(_._1)
numBlocksToFetch += localBlocks.size
} else {
val iterator = blockInfos.iterator
var curRequestSize = 0L
var curBlocks = new ArrayBuffer[(BlockId, Long)]
while (iterator.hasNext) {
val (blockId, size) = iterator.next()
if (size > 0) {
curBlocks += ((blockId, size))
remoteBlocks += blockId //记录到remoteBlocks
numBlocksToFetch += 1 //记录数据块的总数
curRequestSize += size //记录数据块大小
} else {
throw new BlockException(blockId, "Negative block size " + size)
}
//数据块大小,或者该address下数据块数目达到限定,封装为一个FetchRequest
if (curRequestSize >= targetRequestSize ||
curBlocks.size >= maxBlocksInFlightPerAddress) {
// Add this FetchRequest
remoteRequests += new FetchRequest(address, curBlocks)
logDebug(s"Creating fetch request of $curRequestSize at $address "
+ s"with ${curBlocks.size} blocks")
//重置数据
curBlocks = new ArrayBuffer[(BlockId, Long)]
curRequestSize = 0
}
}
// Add in the final request
// 将剩余的远程数据块封装为一个FetchRequest
if (curBlocks.nonEmpty) {
remoteRequests += new FetchRequest(address, curBlocks)
}
}
}
logInfo(s"Getting $numBlocksToFetch non-empty blocks including ${localBlocks.size}" +
s" local blocks and ${remoteBlocks.size} remote blocks")
remoteRequests
}
fetchUpToMaxBytes()方法
private def fetchUpToMaxBytes(): Unit = {
// Send fetch requests up to maxBytesInFlight. If you cannot fetch from a remote host
// immediately, defer the request until the next time it can be processed.
// Process any outstanding deferred fetch requests if possible.
if (deferredFetchRequests.nonEmpty) {
for ((remoteAddress, defReqQueue) <- deferredFetchRequests) {
while (isRemoteBlockFetchable(defReqQueue) &&
!isRemoteAddressMaxedOut(remoteAddress, defReqQueue.front)) {
val request = defReqQueue.dequeue()
logDebug(s"Processing deferred fetch request for $remoteAddress with "
+ s"${request.blocks.length} blocks")
send(remoteAddress, request)
if (defReqQueue.isEmpty) {
deferredFetchRequests -= remoteAddress
}
}
}
}
// Process any regular fetch requests if possible.
while (isRemoteBlockFetchable(fetchRequests)) {
val request = fetchRequests.dequeue()
val remoteAddress = request.address
if (isRemoteAddressMaxedOut(remoteAddress, request)) {
logDebug(s"Deferring fetch request for $remoteAddress with ${request.blocks.size} blocks")
val defReqQueue = deferredFetchRequests.getOrElse(remoteAddress, new Queue[FetchRequest]())
defReqQueue.enqueue(request)
deferredFetchRequests(remoteAddress) = defReqQueue
} else {
send(remoteAddress, request)
}
}
def send(remoteAddress: BlockManagerId, request: FetchRequest): Unit = {
sendRequest(request)
numBlocksInFlightPerAddress(remoteAddress) =
numBlocksInFlightPerAddress.getOrElse(remoteAddress, 0) + request.blocks.size
}
def isRemoteBlockFetchable(fetchReqQueue: Queue[FetchRequest]): Boolean = {
fetchReqQueue.nonEmpty &&
(bytesInFlight == 0 ||
(reqsInFlight + 1 <= maxReqsInFlight &&
bytesInFlight + fetchReqQueue.front.size <= maxBytesInFlight))
}
// Checks if sending a new fetch request will exceed the max no. of blocks being fetched from a
// given remote address.
def isRemoteAddressMaxedOut(remoteAddress: BlockManagerId, request: FetchRequest): Boolean = {
numBlocksInFlightPerAddress.getOrElse(remoteAddress, 0) + request.blocks.size >
maxBlocksInFlightPerAddress
}
}
sendRequest(request)方法
private[this] def sendRequest(req: FetchRequest) {
logDebug("Sending request for %d blocks (%s) from %s".format(
req.blocks.size, Utils.bytesToString(req.size), req.address.hostPort))
bytesInFlight += req.size
reqsInFlight += 1
// so we can look up the size of each blockID
val sizeMap = req.blocks.map { case (blockId, size) => (blockId.toString, size) }.toMap
val remainingBlocks = new HashSet[String]() ++= sizeMap.keys
val blockIds = req.blocks.map(_._1.toString)
val address = req.address
//创建一个获取数据的监听器
val blockFetchingListener = new BlockFetchingListener {
override def onBlockFetchSuccess(blockId: String, buf: ManagedBuffer): Unit = {
// Only add the buffer to results queue if the iterator is not zombie,
// i.e. cleanup() has not been called yet.
ShuffleBlockFetcherIterator.this.synchronized {
if (!isZombie) {
// Increment the ref count because we need to pass this to a different thread.
// This needs to be released after use.
buf.retain()
remainingBlocks -= blockId
//将结果保存在results中
results.put(new SuccessFetchResult(BlockId(blockId), address, sizeMap(blockId), buf,
remainingBlocks.isEmpty))
logDebug("remainingBlocks: " + remainingBlocks)
}
}
logTrace("Got remote block " + blockId + " after " + Utils.getUsedTimeMs(startTime))
}
override def onBlockFetchFailure(blockId: String, e: Throwable): Unit = {
logError(s"Failed to get block(s) from ${req.address.host}:${req.address.port}", e)
results.put(new FailureFetchResult(BlockId(blockId), address, e))
}
}
// Fetch remote shuffle blocks to disk when the request is too large. Since the shuffle data is
// already encrypted and compressed over the wire(w.r.t. the related configs), we can just fetch
// the data and write it to file directly.
if (req.size > maxReqSizeShuffleToMem) {
shuffleClient.fetchBlocks(address.host, address.port, address.executorId, blockIds.toArray,
blockFetchingListener, this)
} else {
shuffleClient.fetchBlocks(address.host, address.port, address.executorId, blockIds.toArray,
blockFetchingListener, null)
}
}
数据获取完毕后
BlockStoreShuffleReader的read方法中的combineCombinersByKey(combinedKeyValuesIterator, context)
def combineCombinersByKey(
iter: Iterator[_ <: Product2[K, C]],
context: TaskContext): Iterator[(K, C)] = {
val combiners = new ExternalAppendOnlyMap[K, C, C](identity, mergeCombiners, mergeCombiners)
combiners.insertAll(iter)
updateMetrics(context, combiners)
combiners.iterator
}
BlockStoreShuffleReader的read方法中的combineValuesByKey(keyValuesIterator, context)
def combineValuesByKey(
iter: Iterator[_ <: Product2[K, V]],
context: TaskContext): Iterator[(K, C)] = {
val combiners = new ExternalAppendOnlyMap[K, V, C](createCombiner, mergeValue, mergeCombiners)
combiners.insertAll(iter)
updateMetrics(context, combiners)
combiners.iterator
}
combiners.insertAll(iter)方法
/**
* 将key相同的value进行合并,如果某个key有对应的值就执行merge(也可以理解为更新)操作,如果没有对应的值就新建一个combiner,
* 需要注意的是如果内存不够的话就会将数据spill到磁盘。
*/
def insertAll(entries: Iterator[Product2[K, V]]): Unit = {
if (currentMap == null) {
throw new IllegalStateException(
"Cannot insert new elements into a map after calling iterator")
}
// An update function for the map that we reuse across entries to avoid allocating
// a new closure each time
var curEntry: Product2[K, V] = null
// 定义update函数,主要的逻辑是:如果某个key已经存在记录(record)就使用上面获取
// 的聚合函数进行聚合操作,如果还不存在记录就使用createCombiner方法进行初始化操作
val update: (Boolean, C) => C = (hadVal, oldVal) => {
if (hadVal) mergeValue(oldVal, curEntry._2) else createCombiner(curEntry._2)
}
while (entries.hasNext) {
curEntry = entries.next()
val estimatedSize = currentMap.estimateSize()
if (estimatedSize > _peakMemoryUsedBytes) {
_peakMemoryUsedBytes = estimatedSize
}
if (maybeSpill(currentMap, estimatedSize)) {
currentMap = new SizeTrackingAppendOnlyMap[K, C]
}
currentMap.changeValue(curEntry._1, update)
addElementsRead()
}
}
curEntry = entries.next()最终调用ShuffleBlockFetcherIterator的next方法
override def next(): (BlockId, InputStream) = {
if (!hasNext) {
throw new NoSuchElementException
}
numBlocksProcessed += 1
var result: FetchResult = null
var input: InputStream = null
// Take the next fetched result and try to decompress it to detect data corruption,
// then fetch it one more time if it's corrupt, throw FailureFetchResult if the second fetch
// is also corrupt, so the previous stage could be retried.
// For local shuffle block, throw FailureFetchResult for the first IOException.
while (result == null) {
val startFetchWait = System.currentTimeMillis()
result = results.take()
val stopFetchWait = System.currentTimeMillis()
shuffleMetrics.incFetchWaitTime(stopFetchWait - startFetchWait)
...
// Send fetch requests up to maxBytesInFlight
/ 这里就是关键的代码,即不断的去抓去数据,直到抓去到所有的数据
fetchUpToMaxBytes()
}
combineValuesByKey中的combiners.iterator
override def iterator: Iterator[(K, C)] = {
if (currentMap == null) {
throw new IllegalStateException(
"ExternalAppendOnlyMap.iterator is destructive and should only be called once.")
}
if (spilledMaps.isEmpty) {
destructiveIterator(currentMap.iterator)
} else {
new ExternalIterator()
}
}
ExternalIterator()实例化
/**
* An iterator that sort-merges (K, C) pairs from the in-memory map and the spilled maps
*
* 将所有读取的数据都保存在了mergeHeap中
*/
private class ExternalIterator extends Iterator[(K, C)] {
// A queue that maintains a buffer for each stream we are currently merging
// This queue maintains the invariant that it only contains non-empty buffers
private val mergeHeap = new mutable.PriorityQueue[StreamBuffer]
// Input streams are derived both from the in-memory map and spilled maps on disk
// The in-memory map is sorted in place, while the spilled maps are already in sorted order
// 按照key的hashcode进行排序
private val sortedMap = destructiveIterator(
currentMap.destructiveSortedIterator(keyComparator))
// 将map中的数据和spillFile中的数据的iterator组合在一起
private val inputStreams = (Seq(sortedMap) ++ spilledMaps).map(it => it.buffered)
// 不断迭代,直到将所有数据都读出来,最后将所有的数据保存在mergeHeap中
inputStreams.foreach { it =>
val kcPairs = new ArrayBuffer[(K, C)]
readNextHashCode(it, kcPairs)
if (kcPairs.length > 0) {
mergeHeap.enqueue(new StreamBuffer(it, kcPairs))
}
}