- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- 迁移学习让深度学习更容易
城市中迷途小书童
摘要:一文读懂迁移学习及其对深度学习发展的影响!深度学习在一些传统方法难以处理的领域有了很大的进展。这种成功是由于改变了传统机器学习的几个出发点,使其在应用于非结构化数据时性能很好。如今深度学习模型可以玩游戏,检测癌症,和人类交谈,自动驾驶。深度学习变得强大的同时也需要很大的代价。进行深度学习需要大量的数据、昂贵的硬件、甚至更昂贵的精英工程人才。在ClouderaFastForward实验室,我们
- 股票基金量化开源平台对比
Mr.小海
开源开源金融
股票基金量化开源平台对比分析报告引言研究背景与意义在金融科技快速发展的背景下,量化交易已成为现代金融市场中投资者追求高效与精准交易的核心工具。通过程序化方式,投资者能够迅速处理海量市场数据,制定并执行复杂交易策略,其高效性、低情绪干扰及策略多样性等优势显著[1]。特别是随着人工智能技术的深化,2025年基于深度学习与机器学习的开源量化工具持续涌现,推动行业向数据驱动转型——量化交易将决策逻辑从经验
- 开源基金/股票量化平台调研报告
Mr.小海
金融
开源基金/股票量化平台调研报告引言调研背景与目的近年来,随着人工智能技术的持续深化,量化交易领域迎来了深刻变革。2025年,基于深度学习和机器学习的开源工具不断涌现,不仅在技术层面实现突破,更在实际应用中展现出强大竞争优势,推动行业创新与升级[1].作为融合数学、统计与计算机技术的科技驱动型金融策略,量化交易通过自动化与数据驱动方法提升投资决策效率与准确性,已成为金融机构与投资者追求超额收益的重要
- 神经网络:模拟人脑的 AI 信息处理系统
1.神经网络是什么:AI的“数字大脑”1.1从生物神经元到人工神经元人脑由860亿个神经元通过突触连接形成复杂网络,神经元通过电信号传递信息——当信号强度超过阈值时,神经元被激活并向其他神经元发送信号。神经网络正是模仿这一结构设计的计算模型,其核心是“人工神经元”和“层级连接”。人工神经元接收多个输入信号,通过权重(模拟突触强度)加权求和,再经激活函数处理(模拟神经元“是否激活”),输出结果。例如
- 同步发电机与逆变型电源故障电流特性对比实验研究
神经网络15044
MATLAB专栏仿真模型生成对抗网络学习人工智能开发语言matlab
同步发电机与逆变型电源故障电流特性对比实验研究前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。1.研究背景与意义随着可再生能源在电力系统中的渗透率不断提高,逆变型电源(Inverter-BasedResources,IBR)在电网中的比重日益增加。与传统同步发电机相比,IBR的故障响应特性存在显著差异,这对电力系统的保护设计和运行控制提出了新的挑战
- AIGC革命:基于魔搭社区的LLM应用开发实战——从模型微调到系统部署
Liudef06小白
AIGC人工智能特殊专栏人工智能魔搭AIGCLLM
AIGC革命:基于魔搭社区的LLM应用开发实战——从模型微调到系统部署1.AIGC技术演进与魔搭社区生态解析人工智能生成内容(AIGC)正在重塑内容创作、软件开发和人机交互的边界。从OpenAI的GPT系列到StabilityAI的StableDiffusion,生成式AI技术正以惊人的速度发展。在这场技术革命中,魔搭社区(ModelScope)作为中国领先的AI模型开源平台,正成为开发者探索AI
- Python Gradio:快速搭建人脸识别应用
Python编程之道
Python人工智能与大数据Python编程之道python开发语言ai
PythonGradio:快速搭建人脸识别应用关键词:Python,Gradio,人脸识别,深度学习,计算机视觉,交互式应用,模型部署摘要:本文详细介绍了如何使用Python的Gradio库快速搭建一个交互式的人脸识别应用。我们将从基础概念出发,逐步讲解人脸识别的核心算法原理、Gradio的界面设计方法,并通过完整的项目实战演示如何将深度学习模型部署为可交互的Web应用。文章包含详细的代码实现、数
- 人工智能界的“黑话“大揭秘:AI新词汇速成指南
人工智能界的"黑话"大揭秘:AI新词汇速成指南你是否曾在科技大佬们讨论AI时一头雾水?听到RAG、Agent、PromptEngineering时以为他们在说天书?别担心,今天我们就来一场AI术语的"通俗化运动",让你轻松混入AI圈子,秒变内行人!LLM(大型语言模型):AI界的"大胃王"LLM是吞噬了互联网大部分文字的"数据饕餮"。特点:训练数据以TB(万亿字节)计算参数动辄上千亿计算能力堪比小
- 嵌入式学习-PyTorch(8)-day24
LGGGGGQ
学习pytorch深度学习
torch.optim优化器torch.optim是PyTorch中用于优化神经网络参数的模块,里面实现了一系列常用的优化算法,比如SGD、Adam、RMSprop等,主要负责根据梯度更新模型的参数。️核心组成1.常用优化器优化器作用典型参数torch.optim.SGD标准随机梯度下降,支持momentumlr,momentum,weight_decaytorch.optim.Adam自适应学习
- 解密Claude系列:从原理到实践的全方位解析
软考和人工智能学堂
强化学习人工智能Claude快速入门Claude
引言:Claude系列模型的崛起在人工智能领域,大型语言模型(LLM)的发展日新月异。OpenAI的GPT系列和Anthropic的Claude系列无疑是这一领域的双子星。Claude系列模型以其独特的"ConstitutionalAI"理念和强大的对话能力,正在重塑人机交互的未来。本文将深入探讨Claude系列的技术原理、架构特点,并通过实践代码展示其强大能力。Claude系列的技术演进1.Cl
- 元宇宙:中国数字经济的新赛道——基于游戏生态、AI与区块链的创新实践
boyedu
元宇宙域名游戏人工智能区块链元宇宙
引言:数字经济时代的“新大陆”在数字技术的浪潮中,元宇宙正从科幻概念跃升为全球科技竞争的焦点。中国,作为全球数字经济规模第二大的经济体,正以独特的路径探索元宇宙的发展——以游戏生态为起点,融合人工智能(AI)与区块链技术,构建一个虚实融合的数字新世界。这一路径不仅契合中国在5G、AI、区块链等领域的技术积累,更与“数字经济”“新质生产力”等国家战略形成共振。本文将从技术融合、经济价值、社会影响三个
- 智能体架构设计的五大核心原则:构建下一代AI系统的工程基石
一休哥助手
人工智能
引言:智能体架构的范式演进人工智能领域正经历从孤立模型向自主智能体的范式转变。2025年,全球AI智能体市场规模突破200亿美元,在金融、医疗、制造等领域的渗透率超40%。然而,智能体开发仍面临协作效率低(多智能体任务重叠率达30%)、安全风险高(工具调用错误率18%)和系统僵化(需求变更迭代周期超2周)三大痛点。本文基于产业实践提炼五大核心设计原则,为构建下一代智能体系统提供架构指南。传统LLM
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- 昇思MindSpore创新训练营·长三角站开始报名!
昇思MindSpore
人工智能自然语言处理深度学习
一、介绍为充分发挥长三角研究型大学联盟教学实践基地共建共享功能,加强华东高校优秀青年学子的交流与互动,提供学生与产业界接触的机会,上海交通大学与华为技术有限公司共同发起,面向长三角研究型大学学生开设昇思MindSpore创新训练营。本次训练营以实践项目和业界需求为牵引,以学生实践为主线,让学生在实践的过程中学习和实践人工智能相关知识,掌握相关技术和工具,紧跟业界最新趋势,加深对人工智能行业的认识,
- OPPO未来科技大会,科技感满满!你最爱哪些黑科技呢?
冬天不冷了
#OPPO未来科技大会#OPPO携手IHSMarkit发布《智能互融:借助5G、人工智能和云技术,释放机遇》白皮书,表明人工智能、云技术和边缘设备、互联和物联网的协同努力,将为企业和消费者带来价值。看了一下早上的,是说明年绿厂要发不少好玩的产品,比如智能手表AR眼镜之类的,有些可能跟Reno3一块发,对外是说构建生态万物互联,其实就是多卖几样多赚钱,然后用这钱砸了搞技术赚更大的钱,毕竟现场说了未来
- 大模型核心概念 | 嵌入模型(Embedding)、向量模型(Vector Model)
一、核心概念解析1.1嵌入模型(Embedding)作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜1.2向量模型(VectorModel)作为嵌入技术的下游应用体系,主要包含两大方向
- Python实现神经网络算法指南
代码编织匠人
python神经网络算法
Python实现神经网络算法指南神经网络是一种模拟人脑神经元结构进行信息处理的机器学习算法。在深度学习领域中,神经网络是最为强大的算法之一。Python作为一门简单易学的编程语言,也成为了许多人选择实现神经网络算法的首选语言。在本篇文章中,我们将通过Python代码来实现神经网络算法。导入必要的库为了实现神经网络算法,我们需要导入一些必要的Python库,包括numpy和matplotlib。其中
- 2025年最流行跑分最高的图片理解大模型调研报告
2025年最流行跑分最高的图片理解大模型调研报告引言当前,图片理解大模型正处于快速演进阶段,其技术发展呈现多维度深化与融合的特征。从技术演进方向来看,多模态融合已成为核心趋势之一,文本、图像、视频等不同模态的交互与协同能力显著提升。大型视觉-语言模型(LVLMs)作为人工智能领域的重要突破,标志着多模态理解与交互进入变革性发展阶段,尽管当前模型在各类任务中表现出色,但在细粒度视觉任务等基础能力层面
- 用Python实现神经网络(四)
使用多层神经网络我们展示如何用TensorFlow构建多层神经网络###低出生率数据LowBirthratedata:#Columns Variable Abbreviation#---------------------------------------------------------------------#Lo
- 基于DTLC-AEC与DTLN的轻量级实时语音增强系统设计与实现
神经网络15044
仿真模型神经网络机器学习图像处理cnn人工智能机器人
基于DTLC-AEC与DTLN的轻量级实时语音增强系统设计与实现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。1.引言在当今的互联网通信时代,实时语音通信已成为人们日常生活中不可或缺的一部分。然而,语音通信质量常常受到回声、背景噪声等因素的严重影响。为了解决这些问题,我们需要高效的语音增强技术。本文将详细介绍如何将DTLC-AEC(深度学习回声消
- 第 20 课时:GPU 管理和 Device Plugin 工作机制(车漾)
阿里云云原生
CNCFX阿里巴巴云原生技术公开课阿里云KubernetesCNCF专家团队CNCF专家团队CNCF专家团队Kubernetes
本文将主要分享以下几个方面的内容:需求来源GPU的容器化Kubernetes的GPU管理工作原理课后思考与实践需求来源2016年,随着AlphaGo的走红和TensorFlow项目的异军突起,一场名为AI的技术革命迅速从学术圈蔓延到了工业界,所谓AI革命从此拉开了帷幕。经过三年的发展,AI有了许许多多的落地场景,包括智能客服、人脸识别、机器翻译、以图搜图等功能。其实机器学习或者说是人工智能,并不是
- 智慧后厨检测算法构建智能厨房防护网
智驱力人工智能
人工智能算法高温预警行为识别口罩识别食品安全手套识别
智慧后厨检测:构建安全洁净厨房的智能解决方案背景:传统后厨管理的痛点与智慧化需求餐饮行业后厨管理长期面临操作规范难落实、安全隐患难察觉、卫生状况难追溯等痛点。传统人工巡检效率低、覆盖面有限,难以实现24小时无死角监管。例如,厨师未佩戴口罩或手套、违规使用手机、动火离人等行为,可能引发食品安全事故或火灾风险。随着人工智能技术的成熟,智慧后厨检测系统通过集成多种算法,实现了对后厨人员行为、环境卫生、设
- 《Python Web 框架深度剖析:Django、Flask 与 FastAPI 的选择之道》
清水白石008
课程教程学习笔记开发语言python前端django
《PythonWeb框架深度剖析:Django、Flask与FastAPI的选择之道》开篇引入:从“胶水语言”到Web架构核心Python,自1991年由GuidovanRossum发布以来,凭借其简洁优雅的语法和强大的生态系统,逐渐成为全球最受欢迎的编程语言之一。它不仅在数据科学、人工智能、自动化脚本等领域大放异彩,更在Web开发领域构建起一套成熟的技术体系。作为一位长期从事Python开发与教
- 目标检测-YOLOv5
wydxry
深度学习目标检测YOLO人工智能深度学习
YOLOv5介绍YOLOv5是YOLO系列的第五个版本,由Ultralytics团队发布。虽然YOLOv5并非JosephRedmon原团队发布,但它在YOLOv4的基础上进行了重要的优化和改进,成为了深度学习目标检测领域中的热门模型之一。YOLOv5的优势不仅体现在其性能上,还包括其简洁易用、部署便捷的特点。相较于YOLOv4,YOLOv5对于代码框架的重构、推理速度的提升,以及模型的轻量化等方
- 【DeepSeek实战】10、模型上下文协议(MCP)全解析:从核心架构到实战应用,揭秘AI协作的“凤雏”之力
无心水
人工智能架构DeepSeek实战模型上下文协议MCPCSDN技术干货DeepSeekAI大模型
在人工智能技术飞速发展的今天,大型语言模型(LLM)的能力不断突破,但跨模型协作、上下文一致性维护等问题却成为制约AI系统向更智能、更协同方向发展的瓶颈。模型上下文协议(ModelContextProtocol,MCP)作为专为大模型设计的标准化通信框架,如同“凤雏”之于“卧龙”,为解决这些核心问题提供了关键方案。本文将全面解析MCP的核心概念、架构设计、实操代码、应用案例及未来趋势,通过5000
- 端到端神经网络视频编解码器介绍
码流怪侠
音视频基础深度学习-PyTorch神经网络视频编解码人工智能githubDCVC端到端神经网路音视频
一、技术演进:从模块优化到全局智能的范式跃迁传统编解码器的效率天花板(1990-2017)架构局限:H.264/HEVC依赖手工设计的运动估计、DCT变换、熵编码模块,各模块独立优化导致全局效率损失。高分辨率瓶颈:4K/8K视频普及后,码率与画质矛盾激化,HEVC在VR场景下码率仍需>20Mbps才能保持无伪影画质。端到端神经编解码的爆发期(2017-2024)2017奠基年:Ballé团队提出超
- 【DW11月-深度学习】Task03前馈神经网络
沫2021
参考链接:https://datawhalechina.github.io/unusual-deep-learning/#/4.%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C一、神经元模型2.1神经元1943年,美国神经生理学家沃伦·麦卡洛克(WarrenMcCulloch)和数学家沃尔特·皮茨(WalterPitts)对生物神经元进行
- AI交互的初期魅力与后期维护挑战
AI交互的初期魅力与后期维护挑战引言在当今数字化时代,人工智能(AI)技术正迅速渗透到各个领域,特别是人机交互方面。许多开发者、设计师和用户在初次与AI交互时,往往感受到一种“一时爽”的快感。这种交互方式看似高效、智能,能够快速响应需求,提供即时反馈。然而,随着时间的推移,这种初期魅力往往会转化为高昂的后期维护成本。本文将深入讨论AI交互的这一双面性,重点分析细节沟通不足以及UI设计中AI难以处理
- ONNX模型使用指南:从零开始掌握跨领域模型部署
ONNX模型使用指南:从零开始掌握跨领域模型部署ONNX模型作为一种开放式的神经网络交换格式,已成为AI模型部署的行业标准。当您获得一个没有使用说明的ONNX模型时,可以通过系统化的分析和部署流程,使其在不同领域发挥作用。本文将详细阐述如何分析模型结构、配置运行环境、准备特定领域输入数据、执行推理并处理结果,同时提供图像分类、自然语言处理、医疗影像分析、金融风控和自动驾驶等领域的具体应用示例,帮助
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_