图像融合论文阅读:DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair

@inproceedings{ram2017deepfuse,
title={Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs},
author={Ram Prabhakar, K and Sai Srikar, V and Venkatesh Babu, R},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={4714–4722},
year={2017}
}


论文级别:ICCV 2017
影响因子:-

[论文下载地址]


文章目录

  • 论文解读
    • 关键词
    • 核心思想
    • 网络结构
    • 损失函数
    • 数据集
    • 训练设置
    • 实验
      • 评价指标
      • Baseline
      • 实验结果
  • 传送门
    • 图像融合相关论文阅读笔记
    • 图像融合论文baseline总结
    • 其他论文
    • 其他总结
    • ✨精品文章总结


论文解读

作者提出了一种解决多曝光融合(MEF)的网络DeepFuse。
这是第一篇使用CNN进行MEF的论文
同时发布了新的基准数据集

关键词

多曝光图像融合,CNN,

核心思想

分别将RGB源图像转换为YCbCr,然后分别对每个通道(Y,Cb,Cr)提取特征(增加通道数但是不下采样),通过特征融合(相加),通过特征重构层生成该通道的融合图像,最后将融合后的Y,Cb,Cr转换到RGB生成最终融合图像。

参考链接
[什么是图像融合?(一看就通,通俗易懂)]

网络结构

网络结构很简单明了,如下图所示。图1黑框内部分的详细说明为图2所示。
图像融合论文阅读:DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair_第1张图片
图像融合论文阅读:DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair_第2张图片

损失函数

这篇论文太早了,损失函数比较奇怪,我没有慢慢看,有兴趣的同学可以去看原文。

在这里插入图片描述
N是总像素数,P是所有像素的集合。

图像融合论文阅读:DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair_第3张图片
在这里插入图片描述
图像融合论文阅读:DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair_第4张图片
在这里插入图片描述
图像融合论文阅读:DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair_第5张图片

数据集

图像融合数据集链接
[图像融合常用数据集整理]

训练设置

实验

评价指标

  • MEF SSIM score

参考资料
✨✨✨强烈推荐必看博客 [图像融合定量指标分析]

Baseline

  • DeepFuse

参考资料
[图像融合论文baseline及其网络模型]

实验结果

图像融合论文阅读:DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair_第6张图片

更多实验结果及分析可以查看原文:
[论文下载地址]


传送门

图像融合相关论文阅读笔记

[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
[IFCNN: A general image fusion framework based on convolutional neural network]
[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
[FusionGAN: A generative adversarial network for infrared and visible image fusion]
[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
[Visible and Infrared Image Fusion Using Deep Learning]
[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
[U2Fusion: A Unified Unsupervised Image Fusion Network]

图像融合论文baseline总结

[图像融合论文baseline及其网络模型]

其他论文

[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]

其他总结

[CVPR2023、ICCV2023论文题目汇总及词频统计]

✨精品文章总结

✨[图像融合论文及代码整理最全大合集]
✨[图像融合常用数据集整理]

如有疑问可联系:[email protected];
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~

你可能感兴趣的:(图像融合,论文阅读)