Python sklearn中算法的使用方法
发布时间:2020-11-16 09:31:02
来源:亿速云
阅读:95
作者:小新
小编给大家分享一下Python sklearn中算法的使用方法,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!
1、高斯朴素贝叶斯 (GaussianNB)
介绍如何使用sklearn来实现GaussianNBfrom sklearn import datasets
iris = datasets.load_iris()
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
print("Number of mislabeled points out of a total %d points : %d"
% (iris.data.shape[0],(iris.target != y_pred).sum()))
2、多项式朴素贝叶斯 (MultinomialNB/MNB)
随机生成一组数据,然后使用MultinomialNB算法来学习。import numpy as np
X = np.random.randint(50, size=(1000, 100))
y = np.random.randint(6, size=(1000))
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf.fit(X, y)
print(clf.predict(X[2:3]))
3.伯努利朴素贝叶斯 (BernoulliNB)
BernoulliNB实现了基于多元伯努利分布的数据的朴素贝叶斯训练和分类算法
案例:import numpy as np
X = np.random.randint(50, size=(1000, 100))
y = np.random.randint(6, size=(1000))
from sklearn.naive_bayes import BernoulliNB
clf = BernoulliNB()
clf.fit(X, Y)
print(clf.predict(X[2:3]))
4.决策树
决策树作为十大经典算法之一,能够很好的处理多分类问题。
决策树的sklearn接口:class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)
看完了这篇文章,相信你对Python sklearn中算法的使用方法有了一定的了解,想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!