- Ollama平台里最流行的embedding模型: nomic-embed-text 模型介绍和实践
skywalk8163
人工智能embedding人工智能服务器
nomic-embed-text模型介绍nomic-embed-text是一个基于SentenceTransformers库的句子嵌入模型,专门用于特征提取和句子相似度计算。该模型在多个任务上表现出色,特别是在分类、检索和聚类任务中。其核心优势在于能够生成高质量的句子嵌入,这些嵌入在语义上非常接近,从而在相似度计算和分类任务中表现优异。之所以选用这个模型,是因为在Ollama网站查找这个模型,发现
- 流重定向方式实现日志多路输出(c++/c)
通过流重定向方式实现日志多路输出,设计为可扩展架构,支持动态添加多个输出目标(控制台、文件、调试窗口等)。其中C++方案更符合面向对象设计,而C方案则更轻量、更接近系统底层。C++实现(基于流缓冲区)基于标准库的std::streambuf实现流重定向通过MultiStreambuf类将数据分发到多个目标缓冲区支持控制台、文件和调试窗口(OutputDebugString)输出使用单例模式管理日志
- wend看源码-OpenManus
找了一圈尾巴
#开源项目源码学习大模型AgentAIAgent
前言作为曾借势Manus热度推出的开源项目,OpenManus常被称为“开源版Manus”,但需明确的是,其实际定位更接近Demo级实现。相比之下,Manus作为智能体领域的头部方案,不仅成为AIAgent榜单评估的标杆,更已形成成熟的商业化能力。尽管二者在产品成熟度上存在差距,但OpenManus的核心设计思想与Manus并无本质差异。对于希望理解多智能体框架构建逻辑的开发者而言,该项目的代码实
- react移动端开发
暖阳浅笑-嘿
前端reactnative
React在移动端开发中的应用非常广泛,其独特的组件化开发模式和高效的性能使得它成为许多开发者的首选。一、React移动端开发概述React本身是一个用于构建用户界面的JavaScript库,它并不直接针对移动端或Web端,但由于其灵活性和高效性,被广泛应用于移动端开发中。特别是在结合ReactNative等框架时,React能够充分发挥其优势,为移动端应用提供接近原生的性能和体验。二、React
- python易错题
赴335
python开发语言
1.下列不属于IPO程序编写的方法是:(c)A:inputB:processC:programD:output程序的编写方法IPO指input(输入)、process(处理)、output(输出)2.下面哪个不是python的编程方式:(A)A:自然语言B:面向过程C:面向对象D:语句Python是目前最接近自然语言的编程语言,但是不属于自然语言3.关于Python2.x版本和Python3.x版
- 【华为od刷题(C++)】HJ60 查找组成一个偶数最接近的两个素数
m0_64866459
华为odc++开发语言
我的代码:#include//用于输入输出操作(例如cin和cout)#include//用于动态数组操作,存储可能的质数对usingnamespacestd;//判断一个数字x是否是质数(素数)//质数是指只能被1和它本身整除的数boolisprime(intx){for(inti=2;i*i>even){//读取输入的偶数vectorvec;for(inti=2;i<=even/2;++i){
- 12 | 走向元宇宙:数字化工作与生活
_Rye_
元宇宙
专栏快接近尾声了。在之前的课程里,我们一直在用一个框架来概括元宇宙,那就是:元宇宙=立体互联网+价值互联网。这个公式可以帮助我们从宏观角度更好地理解元宇宙。当我们回归工作和生活,用更加个人化的角度来观察元宇宙时,我们可以换用另外一个等式:元宇宙=实体空间+数字空间。通过这个等式,我们可以看到,元宇宙将带给我们线上线下全面融合的数字生活。这一讲的讨论分成两个部分。首先,我们来看看自己周围的数字化发展
- 【机器学习&深度学习】为什么分类任务中类别比例应接近 1:1?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是类别不平衡?二、为什么类别比例应接近1:1?2.1⚠模型容易“偏科”2.2精确率、召回率失真2.3模型训练失衡,梯度方向偏移三、现实案例中的“灾难性后果”四、如何应对类别不平衡问题?4.1数据层面处理4.2模型训练层面优化4.3评估指标替代五、实际场景举例六、模拟场景:银行信用卡欺诈检测6.1场景描述6.2数据集情况6.3模型训练结果(未处理不平衡)6.4模型做了什么?6.5实际
- 单元测试详解
测试老哥
单元测试测试工具自动化测试软件测试python测试用例职场和发展
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快一、什么是单元测试?单元测试是指,对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作,这里的最小可测试单元通常是指函数或者类;单元测试属于最严格的软件测试手段,是最接近代码底层实现的验证手段,可以在软件开发的早期以最小的成本保证局部代码的质量。另外,单元测试都以自动化的方式执行,所以在大量回归测试的场景下执行单元测
- Docker企业级应用:从入门到生产环境最佳实践
一、Docker核心概念与架构1.1Docker技术栈Docker客户端Docker守护进程镜像仓库容器运行时Linux内核命名空间控制组cgroups联合文件系统1.2容器与虚拟机对比特性容器虚拟机启动速度秒级分钟级资源占用MB级GB级隔离性进程级系统级镜像大小10-100MB1-10GB运行性能接近原生有损耗二、Docker全生命周期管理2.1容器操作核心命令#容器全生命周期管理dockerc
- 字符串的模糊匹配方法介绍
超级土豆粉
前端javascripttypescripthtml
字符串的模糊匹配方法介绍目录字符串的模糊匹配方法介绍一、编辑距离(LevenshteinDistance)复杂度分析二、Jaro-Winkler距离复杂度分析三、最长公共子序列(LCS)复杂度分析四、模糊搜索(FuzzySearch)复杂度分析五、正则表达式复杂度分析六、第三方库复杂度分析总结在日常开发和数据处理中,我们经常会遇到需要判断两个字符串是否“相似”或“接近”的场景,这时就需要用到字符串
- 《交易系统:更新与跨越》读后感
十一假期,本来想找一本书读一读。机缘巧合就找到了这本《交易时间》。这本书主要讲了上海证券交易系统在技术管理、架构设计、应用调优、切换部署、运行维护等方面的经验和教训。成书的时间大概是在2010年,交易系统的上线时间大概在2008年,聚现在已经接近十年了,但是书中介绍的很多开发时候的原则和思路放在今天来看也有很大的价值可以学习。同时,这也是一本介绍大型系统开发的简要过程的参考书目。本书涉及了不少的证
- window显示驱动开发—从 BGR8888 转换为 XR_BIAS
程序员王马
windows图形显示驱动开发xr
例如,从BGR8888类型格式的转换(,DXGI_FORMAT_B8G8R8A8_UNORM)到XR_BIAS是无损的。显式选择比例因子510,用于在BGR8888类型格式与XR_BIAS之间提供完全不可逆的转换,而不会导致比例系数511所暗示的非线性跳跃接近0.5。核心设计原理无损转换条件BGR8888是8位/通道的归一化格式(值范围[0,1],步长1/255)。XR_BIAS的10位精度(范围
- Flowable的简单运用
板板正
javamavenspringboot
Flowable介绍:Flowable是一个轻量级的业务流程管理(BPM)和工作流引擎,它允许开发者在应用程序中定义、执行和管理业务流程。简单来说,它帮助你自动化和协调一系列任务或步骤,以完成某个业务目标。举个生活中的例子:想象你在公司申请一个请假流程:员工提交请假申请上级审批;如果超过3天,还需要更高级别的领导审批审批通过后,HR系统更新假期记录最后员工收到审批结果通知这个过程可以使用Flowa
- Boltz-2:革命性生物分子模型,加速药物发现的新引擎
花生糖@
AIGC学习资料库Boltz-2生物模型AI
在药物研发领域,预测蛋白质与其他分子间的结合强度(BindingAffinity)始终是核心挑战之一。传统方法如自由能微扰法(FEP)虽然精确,但计算成本极高,难以大规模应用。如今,Boltz-2的诞生打破了这一瓶颈——这是首个开源的深度学习模型,其结合强度预测准确度接近FEP方法,却将速度提升了1000倍,成为药物早期筛选的“加速器”。项目简介Boltz-2是由jwohlwend团队开发的生物分
- Python: 如何用Python的迭代器或生成器实现斐波那契数列
KevinShi_BJ
python
斐波那契数列(Fibonaccisequence)是指这样一个数列:1,1,2,3,5,8,13,21,34,55,89...这个数列从第3项开始,每一项都等于前两项之和。斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(LeonardoFibonacci)。以兔子繁殖为例子而引入,故又称为”兔子数列“。斐波那契数列又称黄金分割数列,n越大,相邻两值的比越接近黄金分割0.618,非常有趣。百
- A1153LLHLX-T Allegro 1.6V霍尔开关,1μA待机,物联网设备的隐形卫士!
A1153LLHLX-T(Allegro)产品解析与推广文案一、产品定位A1153LLHLX-T是AllegroMicroSystems推出的高灵敏度全极性霍尔效应开关,采用超薄SOT-23W封装(1mm厚度),专为低功耗位置检测和接近传感设计。其1.6V超低工作电压和1μA待机电流特性,使其成为电池供电物联网设备的理想选择。二、核心功能与参数特性参数/性能工作电压1.6V~3.5V(全球最低电压
- 2025.7.4总结
天真小巫
职场记录职场和发展
感恩环节:感谢今日工作顺利度过,明天终于能美美的睡个懒觉了。感谢这周有个美好的双休。今日去实验室参观设备,感谢我的一个同事解答了我关于硬件设备与所做软件业务之间的关系,通过控制器控制网元等相关设备,同时,虽然参加过两周的硬装培训,但在这个光交箱得众多设备里,连交换机长什么样子都忘了。同事之间的交流完全插不上话。业务上还是需要多学习。如果所学的只是不能为自己所用,那么它将化为一摊死水。有氧运动:晚上
- SharePlex for Oracle应用系统高可用和容灾方案
dsg_gulibin
【正Dataguardrmanoracle数据库服务器constraints数据备份产品
第1章前言在企业信息化进程不断加快的今天,保持业务的连续性是企业用户进行数据存储时必须考虑的重要方面。灾难的出现可能导致生产停顿、客户满意度降低,减少企业的竞争力。如何安全、可靠、完整地保存数据,实现系统的灾难恢复是市场竞争的需要,更是进一步提高服务水平和改善服务质量、提升业务支撑能力的重要技术手段。“911”事件使大家更加谨慎地审视自己的应用系统。据有关数据表明,接近50%的公司需要关键业务24
- 加密的病历单(信息学奥赛一本通-T1137)
(上海)编程李老师
信息学奥赛一本通:题解目录算法c++开发语言
【题目描述】小英是药学专业大三的学生,暑假期间获得了去医院药房实习的机会。在药房实习期间,小英扎实的专业基础获得了医生的一致好评,得知小英在计算概论中取得过好成绩后,主任又额外交给她一项任务,解密抗战时期被加密过的一些伤员的名单。经过研究,小英发现了如下加密规律(括号中是一个“原文->密文”的例子)1.原文中所有的字符都在字母表中被循环左移了三个位置(dec->abz)2.逆序存储(abcd->d
- 冒泡和快速排序的区别
郭尘帅666
算法数据结构
冒泡算法快速排序时间复杂度O(n^2)最坏/平均O(nlogn)平均,O(n^2)最坏空间复杂度O(1)O(logn)最好/O(n)最坏稳定性很稳定(元素顺序不变)不稳定(元素顺序可能改变)适用场景小规模数据或接近有序的数据大规模数据核心思想重复遍历,每轮都会把最大的元素移至末尾选择基准值,比基准值小的元素放左边,大的放右边代码实现对比1.冒泡排序publicstaticvoidbubbleSor
- SurveyForge:AI自动撰写综述论文的革命性工具,助力科研效率跃升
花生糖@
AIGC学习资料库人工智能AI论文AI助手
在学术研究领域,综述论文(SurveyPaper)的撰写是一项耗时且复杂的任务,通常需要数周甚至数月的文献调研与内容整合。如今,上海人工智能实验室、复旦大学与上海交通大学联合开源的SurveyForge,通过创新的AI技术,将这一过程压缩至10分钟内,且生成质量接近人工水平,成为科研人员的得力助手。项目简介SurveyForge是一款基于大语言模型(LLM)的自动综述论文生成工具,专为计算机科学领
- 国产替代4644系列电源模块势登场
在全球供应链波动加剧及成本效益诉求提升的背景下,市场对高性能国产替代电源模块的需求持续攀升。当前,上海宸屿电子推出了GC4644N/GC4644T电源模块解决方案,该方案在性能参数上接近甚至超越进口4644系列产品,并在成本控制、供应链稳定性及本地化服务方面展现出显著优势。GC4644N/GC4644T是一款四通道独立4A降压型DC/DC微模块电源,专为嵌入式大电流场景设计。GC4644N采用BG
- 小数据量在paddleocrv4/5训练精度不高的原因探讨
问题:训练集有69张,验证集有48张,每张图的尺寸为2592*1396或接近这个尺寸,每张图约有50到60个目标,且每张图有较多的密集小目标,这些目标区域分别是一些文字或字母或数字。电脑配置显卡是2080ti,运行内存是32g,cpu是9700k。以上条件下,在pp-ocrv3上采用ch_pp_ocrv3_det_student.yml配置并采用ch_pp_ocrv3_det_distill_tr
- 规则书在自动驾驶中的作用
初学大模型
自动驾驶
我们应该知道自动驾驶的重要性,它对车辆的控制牵扯到车内人员安全,车外的人的安全(车外哪里的人都不安全,有人会问车能上树?现在车真能上树,车能进屋,哎车真能进屋)所以责任重大,而大模型不具备边界清晰的控制,所以我们必须用规则库来做最后的底线。规则库在plc中还在应用,来实现精准控制机器生产产品,使合格率很高,正因为有清晰的边界,致使机器操作精准,虽然自动辅助驾驶用大模型可以更接近人类的操作,但大模型
- 遗传算法的原理与实现示例
遗传算法是一种受生物进化理论启发的随机优化算法,其核心思想是模拟自然界中“物竞天择、适者生存”的进化过程,通过对候选解的迭代优化,找到问题的最优解。一、核心思想 遗传算法将优化问题的候选解视为生物群体中的“个体”,每个个体的“基因”对应解的参数。通过模拟生物进化中的选择、交叉、变异等过程,让群体中“适应性强”(即更接近最优解)的个体保留并繁衍,“适应性弱”的个体被淘汰,最终使群体逐渐逼近最优
- 大厂数分面试题
临近假期,又是一个找实习的时候,给大家分享一下最近找实习的一些面经,祝大家都能顺利找到满意的实习~目录面经分享1-游戏公司-乐信圣文-游戏数据分析实习生一面-技术面二面-HR面2-美团销售运营(数据分析方向)3-作业帮数据分析4-美团用户运营5-脉脉数据科学实习生反问环节反问环节很重要。为什么?技术面/业务面面试经验分享工具安利面经分享1-游戏公司-乐信圣文-游戏数据分析实习生一面-技术面1.自我
- KNN(K-近邻算法)(上)--day05
扫把星133
机器学习python人工智能近邻算法算法
KNN(K-NearestNeighbors,K近邻算法)是一种用于分类和回归的非参数化方法。其基本思想是通过找出与新样本最接近的已标记数据中的K个最近邻居来进行预测或分类。注释:非参数化方法是指在统计学和机器学习中,不对数据分布做出严格假设(这些假设通常包括
- 《ORANGE’S:一个操作系统的实现》读书笔记(三十八)尾声(二)
这篇文章是尾声的第二部分,记录如何将Orange’S安装到硬盘上,并实现从硬盘启动。目录从硬盘引导编写硬盘引导扇区和硬盘版loader“安装”hdboot.bin和hdldr.bingrub小结从硬盘引导虽然我们的硬盘上已经有不少内容了,但到目前为止,我们的系统始终是从软盘启动的。下面我们要做的事情就是将Orange’S安装到硬盘上,并实现硬盘启动。我们先回忆一下从软盘启动的过程:BIOS将引导扇
- Dim2Clear:轻松提升画质的得力工具
KJ-拾荒者
经验分享电脑科技职场和发展软件推荐
你是否曾为模糊不清的图片或低画质视频而苦恼?比如,老照片因年代久远变得模糊,想要重温往昔却看不清细节;又或者下载的动漫片段,画质不佳,影响观看体验。这些画质问题,常常让我们的美好回忆或娱乐时光大打折扣。别着急,Dim2Clear软件可以帮你解决这些难题。Dim2Clear是一款实用的图片与视频画质增强工具。在图片处理方面,它支持JPG、PNG、WebP等多种常见格式,通过先进的AI算法,能够有效消
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>