- 音视频知识图谱 2022.04
关键帧Keyframe
前些时间,我在知识星球上创建了一个音视频技术社群:关键帧的音视频开发圈,在这里群友们会一起做一些打卡任务。比如:周期性地整理音视频相关的面试题,汇集一份音视频面试题集锦,你可以看看《音视频面试题集锦2022.04》。再比如:循序渐进地归纳总结音视频技术知识,绘制一幅音视频知识图谱。下面是2022.04月知识图谱新增的内容节选:1)图谱路径:**采集/音频采集/声音三要素/响度******主观计量响
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 【笔记】自然语言处理NLP---概论
xhanZ
NLP相关
(from人文学院开设课程)目录1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自然语言的特点1.1.2自然语言处理研究的意义1.1.3国外研究现状1.2NLP的方法、特点和规律1.2.1理性主义与经验主义1.2.2语料库语言学:经验主义研究方法1.2.3汉语语言处理的方法1.2.4基于知识图谱的深度学习1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自
- GraphRAG入门:基本概念、应用场景及学习方法
学习中的程序媛~
学习方法
一、GraphRAG的用途是什么GraphRAG用于复杂信息分析,适合处理跨文档、有噪音或主题抽象的数据.二、GraphRAG能做什么GraphRAG能连接大量信息,回答普通难搜索难以解答的问题.她可以回答跨文档的问题,也能总结数据集的主要主题.三、GraphRAG的特点1.知识图谱提取:使用llm自动从输入文本文档中创建知识图谱,表示数据中的实体、关系和关键声明2.层次聚类使用leiden技术对
- 用VCS直接仿真vivado工程
啊节奏不对
vcs仿真fpga开发risc-v嵌入式硬件
用VCS直接仿真vivado工程前言编译vcs仿真库simulation设置RunSimulation写Makefile执行脚本,运行vcs仿真前言在日常搬砖过程中,在ICdesign进行fpga原型验证时,在上fpga测试之前,往往需要对vivado工程进行仿真,而vivado工程中可能存在较多的xilinxip或者blockdesign,直接使用vivado仿真,速度难以接收。如果使用vcs进
- 【Java那些年系列-启航篇 01】史上最强JavaSE学习路线图 & 知识图谱
夏之以寒
Java那些年专栏JavaJavaSEJava学习路线Java知识图谱
【Java那些年系列-启航篇01】史上最强JavaSE学习路线图&知识图谱作者名称:纸飞机-暖阳作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:Java那些年专栏专栏介绍:本专栏涵盖了JavaSE从基础语法到面向对象编程,从异常处理到集合框架,从I/O流到多线程并发,再到网络编程和虚拟机内部机制等一系列编程要素个人感慨:市面上关于JavaSE的学习路线或知
- 【Java那些年系列-启航篇 04】Java程序架构:深入理解类与对象的设计原则
夏之以寒
Java那些年专栏java架构类对象数据结构
作者名称:纸飞机-暖阳作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:Java那些年专栏专栏介绍:本专栏涵盖了JavaSE从基础语法到面向对象编程,从异常处理到集合框架,从I/O流到多线程并发,再到网络编程和虚拟机内部机制等一系列编程要素个人感慨:市面上关于JavaSE的学习路线或知识图谱很繁杂,学习起来比较费劲,Java知识体系非常庞大,刚接触阶段只需要
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- 大数据毕业设计hadoop+spark+hive微博舆情情感分析 知识图谱微博推荐系统
qq_79856539
javaweb大数据hadoop课程设计
(一)Selenium自动化Python爬虫工具采集新浪微博评论、热搜、文章等约10万条存入.csv文件作为数据集;(二)使用pandas+numpy或MapReduce对数据进行数据清洗,生成最终的.csv文件并上传到hdfs;(三)使用hive数仓技术建表建库,导入.csv数据集;(四)离线分析采用hive_sql完成,实时分析利用Spark之Scala完成;(五)统计指标使用sqoop导入m
- 大数据毕业设计天hadoop+spark+hive游戏推荐系统 游戏数据分析可视化大屏 steam游戏爬虫 游戏大数据 机器学习 知识图谱 计算机毕业设计 机器学习 深度学习 人工智能 知识图谱
2401_84159688
程序员大数据hadoop人工智能
|—||一、选题的目的和意义用户往往因为不能及时查看游戏信息而造成许多烦恼。另一方面,游戏商城平台没能进行系统的管理与维护使游戏信息没能及时的更新。而传统的游戏信息管理,采用的还是手工备案、人工查询的方式。但是随之游戏信息的增多这种管理方式的工作量不断加大,这种做法就存在费时费力、缺乏时效性、不利于调动人员的积极性等缺点。一旦网站建立好之后,一方面,用户可以在第一时间在系统里查询所需的信息,另一方
- graphRAG原理解析——基于微软graphRAG+Neo4j llm-graph-builder
赖皮猫
neo4j
知识图谱生成llm-graph-builder(以下简称LGB)也使用了最新的graph+RAG的思路,使用知识图谱来加持RAG,提供更加准确和丰富的知识问答。知识图谱的生成上,利用大模型的泛化能力来自动生成和构建知识图谱,包括实体、关系和属性等。其相较于微软开源的GraphRAG(以下简称MS-GRAG)有很多相似和同源之处,但也有很多的不同。模块能力llm-graph-builderGraph
- 在neo4j中导入csv文件并构建知识图谱
芹菜还是菜
知识图谱neo4j知识图谱
本文csv文件数据来源于openKG中达观的开源知识图谱数据。从开源社区中下载下来的数据文件还是json,先用python把json文件转为csv文件。import csvimport jsonwith open('entities.json','r',encoding='utf-8')as fp: data=json.load(fp,strict=False)csv_file=open('en
- 深入理解PyTorch中的MessagePassing
小桥流水---人工智能
深度学习机器学习算法人工智能pytorch人工智能python
深入理解PyTorch中的MessagePassing图神经网络(GraphNeuralNetworks,简称GNNs)在近年来已成为处理图形数据的一种强大工具,广泛应用于社交网络分析、蛋白质结构预测、知识图谱增强等多个领域。PyTorchGeometric(PyG)是基于PyTorch的一个库,专为图神经网络的研究和实现而设计。在PyG中,MessagePassing类是实现图神经网络层的核心组
- ecchart关系图展示(知识图谱)
P-ShineBeam
知识基础echarts前端javascript
ECharts关系图#box{display:none;background-color:lightgoldenrodyellow;width:200px;height:260px;position:absolute;right:10px;top:150px;}#box-type{display:block;}#box-name{display:block;}/*#box-index{*//*di
- 计算机毕业设计Hadoop+Spark知识图谱体育赛事推荐系统 体育赛事热度预测系统 体育赛事数据分析 体育赛事可视化 体育赛事大数据 机器学习 大数据毕业设计 大数据毕设 机器学习 人工智能
计算机毕业设计大全
开发技术前端:vue.js、element-ui、echarts后端:springboot、mybatis大数据:spark、hadoop数据库:mysql关系型数据库、neo4j图数据库算法:协同过滤推荐算法、MLP深度学习模型、SVD神经网络混合推荐算法、lstm模型、KNN、CNN、Sklearn、K-Means第三方平台:百度AI、阿里云短信、支付宝沙箱支付爬虫:Pythonchrome-
- React+Vis.js(06):vis.js修改选中节点的样式和边的样式
叁拾舞
Vis.jsjavascriptreact.js前端vis.js
文章目录初始化知识图谱选中节点修改节点背景颜色选中节点修改节点文字颜色未选中节点恢复节点背景颜色和文字颜色修改当前选中节点的边的颜色初始化知识图谱创建network.js组件,来初始化原始知识图谱:importReact,{useRef,useEffect}from"react";importvisfrom"vis";constnodes=newvis.DataSet([
- 图神经网络GNN的前世今生
小桥流水---人工智能
Python程序代码深度学习人工智能神经网络人工智能深度学习
GNN图神经网络(GraphNeuralNetwork,简称GNN)已经成为处理图形结构数据的一种强大工具,广泛应用于社交网络分析、知识图谱、推荐系统等领域。在本文中,我们将深入探讨图神经网络的历史背景、关键的发展阶段以及未来可能的发展方向。一、背景介绍图(Graph)是一种数据结构,由节点(Node)和连接节点的边(Edge)组成。在许多现实世界的应用中,数据自然地呈现出图形结构,如社交网络中的
- A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications
UnknownBody
LLMDailySurveyPaperLLMforGraph语言模型人工智能自然语言处理
本文是LLM系列文章,针对《ASurveyofLargeLanguageModelsonGenerativeGraphAnalytics:Query,Learning,andApplications》的翻译。生成图分析的大型语言模型综述:查询、学习和应用摘要1引言2前言3图结构理解任务4图学习任务5图形推理6图表示7基于知识图谱的增强检索8基于图LLM的应用9基准数据集和评估10未来的方向11结论
- 计算机毕业设计hadoop+spark知识图谱美食推荐系统 美食价格预测 美团推荐系统 美团爬虫 大众点评爬虫 美食数据分析 美食可视化大屏 大数据毕设
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集大众点评美食数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartsspar
- 计算机毕业设计hadoop+spark知识图谱高考分数预测系统 高考志愿推荐系统 高考可视化大屏 高考大数据 高考数据分析 高考爬虫 大数据毕业设计
计算机毕业设计大全
开发技术hadoopsparkspringbootvue.jsPython爬虫、机器学习、深度学习mybatis-plusneo4j知识图谱图数据库mysql协同过滤算法(基于物品、基于用户模式)MLP模型SVD神经网络CNN、KNN、GNN卷积神经网络预测算法阿里云平台百度AI平台阿里大于短信平台lstm模型创新点4种机器学习推荐算法进行高考志愿学校推荐1种深度学习模型进行高考分数线预测hado
- Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport论文阅读笔记
猪猪想上树
论文阅读笔记
ConditionalFlowMatching:Simulation-FreeDynamicOptimalTransport笔记发现问题连续正规化流(CNF)是一种有吸引力的生成式建模技术,但在基于模拟的最大似然训练中受到了限制。解决问题介绍一种新的条件流匹配(CFM),一种针对CNFs的免模拟训练目标。具有稳定的回归目标,用于扩散模型中的随机流,但享有确定性流模型的有效推断。与扩散模型和CNF目
- 多模态大模型Internvl-1.5-26B微调后部署及测试实录(附代码)
写代码的中青年
大模型promptpython大模型swift微调lora
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。基于Dify的智能分类方案:大模型结合KNN算法(附代码)OpenCompass:大模型测评工具一文读懂多模态大模型基础架构大模型管理平台:one-api使用指南大模型RAG、ROG、RCG概念科普RAGOnMedicalKG:大模型
- 百度Ernie大模型是什么?
会飞的岛格酱
AIGCAIGC百度人工智能
百度的Ernie模型(EnhancedRepresentationthroughkNowledgeIntegration)是一个基于Transformer架构的预训练语言模型。它由百度研发,旨在通过整合大规模语料和知识图谱来增强模型的语言理解和生成能力。它通过整合大规模语料和知识图谱,采用多任务学习和分层预训练策略,在多个自然语言处理任务上取得了显著的性能提升。Ernie模型的不断发展和优化,使其
- 3.Python数据分析—数据分析入门知识图谱&索引(知识体系中篇)
以山河作礼。
Python数据分析项目数据分析知识图谱数据挖掘python开发语言
3.Python数据分析—数据分析入门知识图谱&索引-知识体系中篇一·个人简介二·数据获取和处理2.1数据来源:2.2数据清洗:2.2.1缺失值处理:2.2.2异常值处理:2.3数据转换:2.3.1数据类型转换:2.3.2数据编码:2.4数据合并与重塑:2.4.1数据合并:2.4.2数据拼接:2.4.3数据重塑:三·数据探索与分析3.1描述性统计分析3.2数据可视化原则和技巧3.3探索性数据分析(
- 智合同如何助力建筑行业合同智能化管理
智合同(小智)
合同智能应用AI技术降本增效提质人工智能自然语言处理知识图谱深度学习大数据
#建筑行业#人工智能#AI#合同智能应用#深度学习#自然语言处理技术#知识图谱智合同-采用深度学习、自然语言处理技术、知识图谱等人工智能技术,为企业提供专业的合同相关的智能服务。其主要服务包含:合同智能审查、合同要素智能提取、合同版本对比、合同智能起草、ICR智能识别、合同履约追踪、文本一致性对比、广告审查、合同范本库等服务。智合同在助力建筑行业合同智能化管理方面具有显著的优势。首先,智合同利用A
- 【大咖力荐 新手必备】软件开发入门,这300篇文章就够了!
高校俱乐部
软件开发新手必备数据编码IP
小编在这里根据知识图谱整理了CSDN站内的优质文章300篇,帮助见习工程提升技术能力、实现系统化学习!基础IT技术文章300篇大合集包含:【信息/编码】进制转换25篇、数据编码25篇;【IP/组网】网关与网段25篇、IP协议26篇、主机与DNS23篇、访问控制37篇;【程序逻辑】JavaScript29篇、常用算法37篇;【Web基础】HTML31篇、CSS32篇、DOM与BOM23篇扫码添加小助
- 知识图谱最新权威综述论文解读:实体发现
ngl567
上期我们介绍了2020年知识图谱最新权威综述论文《ASurveyonKnowledgeGraphs:Representation,AcquisitionandApplications》的知识图谱补全部分,本期我们将一起学习这篇论文的实体发现部分。论文地址:https://arxiv.org/pdf/2002.00388.pdfarxiv.org1实体发现本节将基于实体的知识获取区分为若干细分任务,
- 视频回放- Neo4j “图,无处不在 ”关联系列线上研讨会 : 知识图谱助力企业提升数据应用价值
Jennifer726
音视频知识图谱bigdata数据库开发数据仓库
感谢您注册参加1月12日Neo4j“图,无处不在”关联系列线上研讨会-知识图谱助力企业提升数据应用价值。以下是相关内容视频回放。欢迎推荐给更多的同事和朋友观看。图的影响力-回顾2021,展望2022(Dr.JimWebber,Neo4j首席科学家)https://www.bilibili.com/video/BV1V44y1L7kX/从数据分析到数据智能-Neo4j知识图谱介绍(金昕,Neo4j高
- 构建生物医学知识图谱from zero to hero (4):通过Neo4j构建知识图谱
ASKCOS
AIDDCADD化学生物知识图谱neo4j人工智能
图数据库是一种专门用于存储图形数据的NoSQL数据库。与传统的关系型数据库和其他NoSQL数据库不同,图数据库利用图形数据模型来存储和管理数据。图形数据模型由节点和边组成,节点代表实体,边代表实体之间的关系。例如,在社交网络中,用户可以表示为节点,朋友关系可以表示为边。图数据库具有以下特点:灵活的数据模型:图数据库采用图形数据模型,可以灵活地存储和表示各种类型的数据,例如社交网络、地图、知识图谱等
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite