- draw.io(现更名为 diagrams.net)的详细介绍及详细使用教程
小纯洁w
draw.io
以下是关于draw.io(现更名为diagrams.net)的详细介绍及详细使用教程,结合其核心功能、操作步骤和实用技巧整理而成:一、draw.io核心介绍基本定位免费开源:完全免费且无广告,支持网页版和桌面端(Windows/macOS/Linux)。多场景适用:支持流程图、UML图、网络拓扑图、组织结构图、电路图等数十种图表类型。云端集成:无缝对接GoogleDrive、OneDrive、Gi
- k8s-diagrams:直观展现Kubernetes架构的利器
汤力赛Frederica
k8s-diagrams:直观展现Kubernetes架构的利器k8s-diagramsAcollectionofkubernetes-relateddiagrams项目地址:https://gitcode.com/gh_mirrors/k8s/k8s-diagrams在当今的云计算时代,Kubernetes(简称K8s)作为容器编排的事实标准,其复杂而灵活的架构常常令人感到难以理解。k8s-di
- 软件架构师常用的软件工具
程序员
一、建模与设计工具:构建逻辑与物理蓝图架构师的首要职责是将复杂的业务需求抽象成可实现的技术模型,建模与设计工具便是这一过程的得力助手。通过类图、组件图、部署图、时序图等形式化表达,架构师可以向团队清晰传达系统结构和演进路线。常用工具包括:Draw.io(diagrams.net):开源免费的图表绘制工具,支持UML、流程图、网络拓扑图等类型,支持本地或云端保存,适用于快速建模和文档嵌入。Lucid
- 使用 draw.io(现在称为 diagrams.net)进行图表设计和绘图
山外有山a
人工智能chatgpt热门软件draw.io
使用draw.io(现在称为diagrams.net)进行图表设计和绘图的体验通常是积极和高效的。以下是一些用户的使用心得,根据您提供的搜索结果进行总结:界面简洁直观:draw.io的用户界面设计简洁,使得新用户能够快速上手并开始绘制图表。功能丰富:提供了大量的预设模板和形状元素,这有助于加快绘图过程,并且可以容易地找到所需的图形元素来构建图表。多种保存格式:用户可以将作品保存为可编辑的位图文件或
- Gartner《Decision Point for Selecting the Right APIMediation Technology》学习心得
架构师学习成长之路
架构云原生微服务
一、API中介技术概述背景,API中介技术变得多样化,应用与集成架构师需要借助决策框架,从企业级API网关、轻量级网关、入口网关以及服务网格中挑选出适合多粒度服务和API的中介技术。随着无服务器架构与容器管理系统的兴起,API管理、API网关与服务网格在转型、流量管理、安全以及可观测性方面出现了功能特性重叠与互补的情况。例如,企业级API网关通常位于网络边缘,用于保障进出API流量的安全,适合那些
- C/C++ 和 OpenCV 来制作一个能与人对弈的实体棋盘机器人
whoarethenext
c语言c++opencv下棋
项目核心架构整个系统可以分为四个主要模块:视觉感知模块(VisionPerceptionModule):任务:使用摄像头“看懂”棋盘。工具:C++,OpenCV。功能:校准摄像头、检测棋盘边界、进行透视变换、分割64个棋盘格、识别每个格子上的棋子、检测人类玩家的走法。决策模块(Decision-MakingModule):任务:充当“棋手大脑”,根据当前棋局决定最佳走法。工具:一个现成的开源国际象
- Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能自然语言处理
论文主要内容总结研究背景与问题大语言模型(LLMs)在决策领域展现出巨大潜力,但预训练模型存在推理能力不足、难以适应新环境的问题,严重制约了其在复杂现实任务中的应用。现有方法如强化学习(RL)单独使用或LLM辅助RL的方式,仍依赖token预测范式,缺乏结构化推理和快速适应性。核心框架与方法提出因果感知大语言模型(Causal-awareLLMs),将结构因果模型(SCM)整合到决策过程中,采用“
- 吉姆斯特图自动生成器(Joystick Diagrams)中文使用手册
邬千旻Herman
吉姆斯特图自动生成器(JoystickDiagrams)中文使用手册joystick-diagramsAutomaticallyoutputyourgamejoystickconfigsintoprintableformatswithallyourbinds.项目地址:https://gitcode.com/gh_mirrors/jo/joystick-diagrams项目介绍吉姆斯特图自动生成器
- Decision Tree vs. Linear Regression
土豆羊626
机器学习人工智能python机器学习
DecisionTreevs.LinearRegressionDecisiontreesandlinearregressionarebothsupervisedmachinelearningtechniques,buttheyservedifferentpurposesandhavedistinctcharacteristics.Belowisadetailedcomparison:KeyDiff
- Spark MLlib模型训练—分类算法 Decision tree classifier
猫猫姐
Spark实战spark-ml分类决策树
SparkMLlib模型训练—分类算法Decisiontreeclassifier决策树(DecisionTree)是一种经典的机器学习算法,广泛应用于分类和回归问题。决策树模型通过一系列的决策节点将数据划分成不同的类别,从而形成一棵树结构。每个节点表示一个特征的分裂,叶子节点代表最终的类别标签。在大数据场景下,SparkMLlib提供了对决策树的高效实现,能够处理大规模数据集并生成复杂的分类模型
- IntelliJ IDEA查看一个类的类图结构 show diagrams,用图表的方式查看类的关系层次
在下,杨江河
Mac开发JAVAintellij-ideajavamybatis
这里我们以JpaRepository.class为例。JpaRepository是SpringDataJPA中非常重要的类。它继承自SpringData的统一数据访问接口——Repository1.找到该类,然后右键打开菜单,选择showdiagrams2.如下图,打开的界面就是该类的关系层次从上图可以看出:JpaRepository继承自PagingAndSortingRepository接口,
- 【学习笔记】 陈强-机器学习-Python-Ch11 决策树(Decision Tree)
赛博机器喵
陈强-机器学习-Python机器学习学习笔记python
系列文章目录监督学习:参数方法【学习笔记】陈强-机器学习-Python-Ch4线性回归【学习笔记】陈强-机器学习-Python-Ch5逻辑回归【课后题练习】陈强-机器学习-Python-Ch5逻辑回归(SAheart.csv)【学习笔记】陈强-机器学习-Python-Ch6多项逻辑回归【学习笔记及课后题练习】陈强-机器学习-Python-Ch7判别分析【学习笔记】陈强-机器学习-Python-Ch
- 浅谈层次化的AI架构
weixin_34292959
后端前端ViewUI
原文地址:http://www.aisharing.com/archives/86/comment-page-1记得在以前的一篇文章中谈到了一种类似于双缓冲的AI结构,最近在整理一些东西的时候,发现这样的AI结构具有一定的通用性,而且层与层之间耦合度相对较低,作为一种层次化的AI架构,非常值得一谈。在我的脑海中,AI一般分为两个部分,一个是决策(Decision)部分,一个是行为(Behavior
- Tabnet介绍(Decision Manifolds)和PyTorch TabNet之TabNetRegressor
人工都不智能了
pytorch人工智能python
Tabnet介绍(DecisionManifolds)和PyTorchTabNet之TabNetRegressorDecisionManifoldsTabNet1.核心思想2.架构组成3.工作流程4.优点PyTorchTabNetTabNetRegressor参数1.模型相关参数`n_d``n_a``n_steps``gamma``cat_idxs``cat_dims``cat_emb_dim`2
- 3.2 Agent核心能力:感知、规划、决策与执行
MonkeyKing.sun
大模型+agent企业应用实践人工智能agent
智能代理(Agent)是一种能够在复杂环境中自主运作的计算实体,其智能行为依赖于四大核心能力:感知(Perception)、规划(Planning)、决策(Decision-making)和执行(Execution)。这些能力共同构成了Agent的智能框架,使其能够从感知环境开始,制定行动计划,做出合理决策,并通过具体行动影响环境。本文将系统且专业地探讨这四大核心能力的定义、作用、关键技术、应用场
- diagrams.git 开源项目教程
羿丹花Zea
diagrams.git开源项目教程diagramsGenerateFlowcharts,NetworkSequenceDiagrams,GraphVizDotDiagrams,andRailroadDiagrams项目地址:https://gitcode.com/gh_mirrors/dia/diagrams项目介绍diagrams.git是一个强大的在线图表制作工具,它允许用户通过简单的拖放界
- k8s-diagrams:一键生成Kubernetes集群架构图
卢迁铎Renee
k8s-diagrams:一键生成Kubernetes集群架构图k8s-diagramsCreatediagramsfromtheKubernetesAPIwithgo-diagrams.项目地址:https://gitcode.com/gh_mirrors/k8/k8s-diagrams项目介绍k8s-diagrams是一款便捷的工具,能够帮助你从Kubernetes集群中生成精美的架构图。只需
- 智能体开发基础:从概念到实现
禁默
人工智能大模型智能体
前言智能体(Agent)是人工智能中的核心概念之一,它广泛应用于游戏AI、机器人、自动驾驶、智能客服等领域。本篇博客将从智能体的基本概念、核心架构、开发工具,以及简单的智能体实现入手,为想要入门智能体开发的读者提供清晰的指导。1.什么是智能体?1.1智能体的定义智能体(Agent)是一个能够感知环境(Perception)、做出决策(Decision),并执行动作(Action)以影响环境的自主系
- 决策树(Decision Tree):机器学习中的经典算法
Jason_Orton
机器学习算法决策树随机森林人工智能
1.什么是决策树?决策树(DecisionTree)是一种基于树形结构的机器学习算法,适用于分类和回归任务。其核心思想是通过一系列的规则判断,将数据集不断划分,最终形成一棵树状结构,从而实现预测目标。在决策树中,每个内部节点表示一个特征,每个分支代表一个特征的取值,每个叶子节点对应一个类别或预测值。决策树的目标是构建一棵能够有效区分不同类别的树,并在测试数据上保持较好的泛化能力。2.决策树的工作原
- WHALE: TOWARDS GENERALIZABLE AND SCALABLE WORLD Models for Embodied Decision-making 翻译
Doc2X
经典论文翻译人工智能
Doc2X|PDF到Markdown一步搞定只需几秒,Doc2X即可将PDF转换为Markdown,支持批量处理和深度翻译功能。Doc2X|One-StepPDFtoMarkdownConversionInjustseconds,Doc2XconvertsPDFstoMarkdown,withsupportforbatchprocessingandadvancedtranslationfeatur
- 【机器学习】决策树 ( Decision Tree )
AI天才研究院
ChatGPTDeepSeekR1&大数据AI人工智能大模型深度学习实战机器学习决策树算法支持向量机人工智能
【机器学习】决策树(DecisionTree)文章目录【机器学习】决策树(DecisionTree)1.ID3(1)信息增益(2)ID3的算法流程(3)实现ID32.C4.53.CART(1)决策桩DecisionStump(2)回归CART:最小二乘回归树leastsquaresregressiontree⚪回归CART的例子(3)分类CART(4)处理缺失值Handlemissingfeatu
- BB5112 Business Decision Modelling
后端
AssignmentBriefing(Level5)ModuleNameBusinessDecisionModellingModuleCodeBB5112AssignmentTitleAssignment2TypeofSubmissionOnlinethroughCanvasWeightingoftheassignmentintheoverallmodulegrade70%WordCount/Ti
- BB5112 Business Decision Modelling
后端
AssignmentBriefing(Level5)ModuleNameBusinessDecisionModellingModuleCodeBB5112AssignmentTitleAssignment2TypeofSubmissionOnlinethroughCanvasWeightingoftheassignmentintheoverallmodulegrade70%WordCount/Ti
- scikit-learn工具学习 - random,mgrid,np.r_ ,np.c_, scatter, axis, pcolormesh, contour, decision_function...
helloxielan
数据结构与算法python人工智能
yuanwen:http://blog.csdn.net/crossky_jing/article/details/49466127scikit-learn练习题题目:Tryclassifyingclasses1and2fromtheirisdatasetwithSVMs,withthe2firstfeatures.Leaveout10%ofeachclassandtestpredictionpe
- Tools for Decision Analysis(Analysis of Risky Decisions)
aris_zzy
优化算法toolsoptimizationstatisticsmatrixfunctioneach
ToolsforDecisionAnalysis:AnalysisofRiskyDecisionsIfyouwillbeginwithcertainties,youshallendindoubts,butifyouwillcontenttobeginwithdoubts,youshallendinalmostcertainties.--FrancisBaconEuropeSiteSiteforAs
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 【Markdown】【mermaid】Mermaid时序图基础语法Sequence Diagrams - Basic Syntax
hmywillstronger
microsoftmermaid
时序图-SequenceDiagrams简介-Introduction时序图是一种交互图,显示了流程如何相互操作以及它们的执行顺序。它可以用来描述用例场景或设计一个良好的面向对象系统。Sequencediagramsareatypeofinteractiondiagramthatillustratehowflowsoperatewithoneanotherandinwhatorder.Theyca
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 马尔可夫决策过程(Markov decision process,MDP)
太阳城S
学习笔记马尔可夫决策过程MDP机器学习深度学习
文章目录马尔可夫决策过程(MDP)在机器学习中应用在机器学习中的引用示例引用:实例场景:机器人导航MDP的定义:引用示例:在此基础上更具体的描述,并给出每一步的推断计算过程场景描述:3x3网格中的机器人导航MDP的定义强化学习算法:Q-Learning具体实例与推断计算过程回合1(Episode1Episode1Episode1)回合2(Episode2Episode2Episode2)回合3(E
- Streamline Complex Decision Making with AI
SEO-狼术
DelphinetCrack开发语言
StreamlineComplexDecisionMakingwithAILogicGemhelpsdevelopersandanalyststocollaborateoncraftingclear,consistentbusinessrulesusingdecisiontablemethodology.LogicGemisaWindowsapplicationdesignedtoempowerb
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持