Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化

    • 基础地图使用
      • 基础地图演示
      • 基础地图演示 - 视觉映射器
    • 疫情地图-国内疫情地图
      • 案例效果
      • 数据整理
    • 疫情地图-省级疫情地图
      • 省疫情地图

基础地图使用

基础地图演示

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第1张图片
Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第2张图片
代码示例:

"""
演示地图可视化的基本使用
"""
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts


# 准备地图对象
map = Map()

# 准备数据
data = [
    ("北京市", 99),
    ("上海市", 199),
    ("湖南省", 299),
    ("台湾省", 199),
    ("安徽省", 299),
    ("广东省", 399),
    ("湖北省", 599)
]

# 添加数据
map.add("测试地图", data, "china")

# 绘图
map.render("测试地图.html")

# 设置全局选项

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第3张图片

基础地图演示 - 视觉映射器

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第4张图片
Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第5张图片
取色请参考:http://www.ab173.com/gongju/ui/rgb.php
Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第6张图片

代码示例:

"""
演示地图可视化的基本使用
"""
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts


# 准备地图对象
map = Map()

# 准备数据
data = [
    ("北京市", 99),
    ("上海市", 199),
    ("湖南省", 299),
    ("台湾省", 199),
    ("安徽省", 299),
    ("广东省", 399),
    ("湖北省", 599)
]

# 添加数据
map.add("测试地图", data, "china")

# 设置全局选项
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color":"#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color":"#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color":"#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color":"#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color":"#CC3333"},
            {"min": 10000, "label": "10000以上", "color":"#990033"}
        ]

    )
)

# 绘图
map.render("测试地图.html")

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第7张图片

疫情地图-国内疫情地图

案例效果

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第8张图片

数据整理

  • 获取数据
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第9张图片

  • 数据整体结构(全国)
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第10张图片

  • 省数据结构
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第11张图片

  • 获取每个省份的确诊数据
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第12张图片

  • 上述代码执行后输出,每个省的确诊数据
    在这里插入图片描述

代码示例:

"""
演示全国疫情可视化地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *

# 读取数据文件
f = open("D:/python/可视化案例数据/地图数据/疫情.txt", "r", encoding="UTF-8")
data = f.read()  # 全部数据

# 关闭文件
f.close()

# 取到各省数据
# 将字符串json转换为python的字典
data_dict = json.loads(data)  # 基础数据字典
# 从字典中取出省份的数据
province_data_list = data_dict["areaTree"][0]["children"]

# 组装每个省份和确诊人数为元组,并将各个省的数据都封装入列表内
data_list = []  # 绘图需要使用的数据列表
for province_data in province_data_list:
    province_name = province_data["name"]  # 省份名称
    province_confirm = province_data["total"]["confirm"]  # 确诊人数
    data_list.append((province_name, province_confirm))

print(data_list)

# 创建地图对象
map = Map()

# 添加数据
map.add("各省份确诊人数", data_list, "china")
# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts(title="全国疫情地图"),
    visualmap_opts=VisualMapOpts(
        is_show=True,  # 是否显示
        is_piecewise=True,  # 是否分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color":"#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color":"#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color":"#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color":"#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color":"#CC3333"},
            {"min": 10000, "label": "10000以上", "color":"#990033"}
        ]
    )
)

# 绘图
map.render()

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第13张图片

疫情地图-省级疫情地图

省疫情地图

  • 效果展示
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第14张图片

  • 获取河南省各市数据
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第15张图片

  • 省数据结构
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第16张图片

  • 把各市数据汇总到一个列表中
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第17张图片

  • 参考国内疫情地图生成河南省疫情地图
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第18张图片
    Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第19张图片

代码示例:

"""
演示河南省疫情地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *

# 读取文件
f = open("D:/python/可视化案例数据/地图数据/疫情.txt", "r", encoding="UTF-8")
data = f.read()

# 关闭文件
f.close()

# 获取河南省数据
# json数据转换为python字典
data_dict = json.loads(data)

# 取到河南省数据
cities_data = data_dict["areaTree"][0]["children"][3]["children"]

# 构建地图
data_list = []
for city_data in cities_data:
    city_name = city_data["name"] + "市"
    city_confirm = city_data["total"]["confirm"]
    data_list.append((city_name, city_confirm))

print(data_list)
# 手动添加济源市的数据
data_list.append(("济源市", 6))
# 构建地图
map = Map()
map.add("河南省疫情分布", data_list, "河南")

# 设置全局选项
map.set_global_opts(
    title_opts=TitleOpts(title="全国疫情地图"),
    visualmap_opts=VisualMapOpts(
        is_show=True,  # 是否显示
        is_piecewise=True,  # 是否分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color":"#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color":"#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color":"#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color":"#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color":"#CC3333"},
            {"min": 10000, "label": "10000以上", "color":"#990033"}
        ]
    )
)

# 绘图
map.render()


Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化_第20张图片

你可能感兴趣的:(Python,python)