- LLM 词汇表
落难Coder
LLMsNLP大语言模型大模型llama人工智能
Contextwindow“上下文窗口”是指语言模型在生成新文本时能够回溯和参考的文本量。这不同于语言模型训练时所使用的大量数据集,而是代表了模型的“工作记忆”。较大的上下文窗口可以让模型理解和响应更复杂和更长的提示,而较小的上下文窗口可能会限制模型处理较长提示或在长时间对话中保持连贯性的能力。Fine-tuning微调是使用额外的数据进一步训练预训练语言模型的过程。这使得模型开始表示和模仿微调数
- 如何部分格式化提示模板:LangChain中的高级技巧
nseejrukjhad
langchainjava服务器python
标题:如何部分格式化提示模板:LangChain中的高级技巧内容:如何部分格式化提示模板:LangChain中的高级技巧引言在使用大型语言模型(LLM)时,提示工程是一个关键环节。LangChain提供了强大的提示模板功能,让我们能更灵活地构建和管理提示。本文将介绍LangChain中一个高级特性-部分格式化提示模板,这个技巧可以让你的提示管理更加高效和灵活。什么是部分格式化提示模板?部分格式化提
- 人工智能时代,程序员如何保持核心竞争力?
jmoych
人工智能
随着AIGC(如chatgpt、midjourney、claude等)大语言模型接二连三的涌现,AI辅助编程工具日益普及,程序员的工作方式正在发生深刻变革。有人担心AI可能取代部分编程工作,也有人认为AI是提高效率的得力助手。面对这一趋势,程序员应该如何应对?是专注于某个领域深耕细作,还是广泛学习以适应快速变化的技术环境?又或者,我们是否应该将重点转向AI无法轻易替代的软技能?让我们一起探讨程序员
- BART&BERT
Ambition_LAO
深度学习
BART和BERT都是基于Transformer架构的预训练语言模型。模型架构:BERT(BidirectionalEncoderRepresentationsfromTransformers)主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本,并生成文本的表示。BERT特别擅长理解语言的上下文,因为它在预训练阶段使用了掩码语言模型(MLM)任务,即
- 程序员如何在AI时代保持核心竞争力
nfgo
chatgpt人工智能
程序员如何在AI时代保持核心竞争力随着AIGC(如ChatGPT、MidJourney、Claude等)大语言模型的相继涌现,AI辅助编程工具逐渐普及,程序员的工作方式正在发生深刻的变革。AI不仅能够自动生成代码,还能优化、调试、甚至提出解决方案。这一趋势让许多人担心:AI会不会最终取代部分编程工作?然而,也有人认为AI是提升效率的得力助手。那么,程序员在这个AI崛起的时代该如何应对?是专注某个领
- 腾讯发表多模态综述,一文详解多模态大模型
存内计算开发者社区
多模态大模型人工智能chatgptAIGC量子计算AI-nativegptagi
多模态大语言模型(MLLM)是近年来兴起的一个新的研究热点,它利用强大的大语言模型作为大脑来执行多模态任务。MLLM令人惊讶的新兴能力,如基于图像写故事和无OCR的数学推理,在传统方法中是罕见的,这表明了一条通往人工通用智能的潜在道路。在本文中,追踪多模态大模型最新热点,讨论多模态关键技术以及现有在情绪识别上的应用。腾讯AILab发表了一篇关于多模态大模型的最新综述《MM-LLMs:RecentA
- 【有啥问啥】刷爆各大榜单的Reflection 70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法
Chauvin912
大模型行业调研人工智能算法
刷爆各大榜单的Reflection70B模型背后的错误自我纠正(Reflection-Tuning)技术解析:一种革新AI模型的方法在快速发展的AI领域,尤其是大型语言模型(LLM)的竞争中,错误自我纠正技术(Reflection-Tuning)正逐步成为提升模型性能的关键突破。该技术通过赋予模型自我检测和纠正错误的能力,显著提高了输出的准确性和可靠性。本文将深入解析Reflection-Tunn
- HALTT4LLM:大型语言模型的幻觉检测指标
谢忻含Norma
HALTT4LLM:大型语言模型的幻觉检测指标haltt4llmThisprojectisanattempttocreateacommonmetrictotestLLM'sforprogressineliminatinghallucinationswhichisthemostseriouscurrentprobleminwidespreadadoptionofLLM'sformanyrealpur
- Reflection 70B——HyperWrite推出的大型语言模型
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/在AI技术飞速发展的过程中,我们已经见证了可以写作、编程,甚至创造艺术的模型问世。但有一
- 深度解析:如何使用输出解析器将大型语言模型(LLM)的响应解析为结构化JSON格式
m0_57781768
语言模型json人工智能
深度解析:如何使用输出解析器将大型语言模型(LLM)的响应解析为结构化JSON格式在现代自然语言处理(NLP)的应用中,大型语言模型(LLM)已经成为了重要的工具。这些模型能够生成丰富的自然语言文本,适用于各种应用场景。然而,在某些应用中,开发者不仅仅需要生成文本,还需要将这些生成的文本转换为结构化的数据格式,例如JSON。这种结构化的数据格式在数据传输、存储以及进一步处理时具有显著优势。本文将深
- 深入探讨:如何在Python中通过LangChain技术精准追踪大型语言模型(LLM)的Token使用情况
m0_57781768
pythonlangchain语言模型
深入探讨:如何在Python中通过LangChain技术精准追踪大型语言模型(LLM)的Token使用情况在现代的人工智能开发中,大型语言模型(LLM)已经成为了不可或缺的工具,无论是用于自然语言处理、对话生成,还是其他复杂的文本生成任务。然而,随着这些模型的广泛应用,开发者面临的一个重要挑战是如何有效地追踪和管理Token的使用情况,特别是在生产环境中,Token的使用直接影响着API调用的成本
- 使用You.com API进行LLM输出的事实性增强
aehrutktrjk
python开发语言
使用You.comAPI进行LLM输出的事实性增强引言大型语言模型(LLM)在生成人类可读的文本方面表现出色,但它们可能会产生过时或不准确的信息。You.comAPI是一套工具,旨在帮助开发者将LLM的输出与最新、最准确、最相关的信息相结合,这些信息可能不包含在LLM的训练数据集中。本文将介绍如何使用You.comAPI来增强LLM的输出,提高其事实性和时效性。You.comAPI的设置和使用安装
- 如何从大型语言模型(LLM)流式响应
aehrutktrjk
语言模型microsoftajaxpython
引言随着大型语言模型(LLM)的不断发展,我们不仅能够获得高质量的文本生成结果,还可以实时观察模型生成文本的过程。流式响应允许我们以一种更加交互和动态的方式与LLM进行交互,这在某些应用场景中非常有用。在本文中,我们将探讨如何从LLM流式获取响应。基础知识在开始之前,我们需要了解一些基础概念。所有的LLM都实现了Runnable接口,该接口提供了一些默认实现的标准方法,如invoke、batch、
- 深度学习-13-小语言模型之SmolLM的使用
皮皮冰燃
深度学习深度学习
文章附录1SmolLM概述1.1SmolLM简介1.2下载模型2运行2.1在CPU/GPU/多GPU上运行模型2.2使用torch.bfloat162.3通过位和字节的量化版本3应用示例4问题及解决4.1attention_mask和pad_token_id报错4.2max_new_tokens=205参考附录1SmolLM概述1.1SmolLM简介SmolLM是一系列尖端小型语言模型,提供三种规
- LLM 进展和前进道路
晨曦_子画
人工智能学习人工智能
近年来,语言模型取得了重大进展。这一进步是对数十亿个参数进行广泛训练和调整的结果,也是商业用途基准测试的结果。这项工作的起源可以追溯到1950年代,当时自然语言理解和处理的研究开始了。本文旨在概述过去70年语言模型的历史和演变。它还将检查当前可用的大型语言模型(LLM),包括其架构、调优参数、企业就绪情况、系统配置等,以深入了解其训练和推理过程。这种探索将使我们能够了解该领域的进展,并评估可用于商
- 基于 LangChain 开发应用程序第三章-储存
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分之前的章节可以查看基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出第三章储存在与语言模型交互时,你可能已经注意到一个关键问题:它们并不记忆你之前的交流内容,这在我们构建一些应用程序(如聊天机器人)的时候,带来了很大的挑战,使得对
- Upstage 将发布新一代 LLM “Solar Pro “预览版
吴脑的键客
人工智能人工智能
SolarPro是最智能的LLM,经过优化可在单GPU上运行,性能超过微软、Meta和谷歌等科技巨头的模型。加州圣何塞2024年9月11日电/美通社/–Upstage今天宣布发布其下一代大型语言模型(LLM)SolarPro的预览版。加州圣何塞2024年9月11日电/美通社/–Upstage今天宣布发布其下一代大型语言模型(LLM)SolarPro的预览版。该预览版作为开源模型免费提供API访问,
- 使用vllIm部署大语言模型
添砖JAVA的小墨
机器学习
使用vllm部署大语言模型一般需要以下步骤:一、准备工作1.系统要求-操作系统:常见的Linux发行版(如Ubuntu、CentOS)或Windows(通过WSL)。-GPU支持:NVIDIAGPU并安装了适当的驱动程序。-足够的内存和存储空间。2.安装依赖-Python3.8及以上版本。-CUDA工具包(根据GPU型号选择合适的版本)。二、安装vllm1.创建虚拟环境(推荐)-使用Conda:c
- OpenLM: 一个灵活的开源大语言模型接口工具
llzwxh888
语言模型人工智能自然语言处理python
OpenLM:一个灵活的开源大语言模型接口工具引言在人工智能和自然语言处理快速发展的今天,大语言模型(LLM)已经成为许多应用的核心。然而,不同的LLM提供商往往有着各自的API和使用方式,这给开发者带来了一定的挑战。本文将介绍OpenLM,这是一个零依赖、兼容OpenAIAPI的LLM提供者接口,它可以直接通过HTTP调用不同的推理端点。我们将深入探讨OpenLM的特性、使用方法,以及如何将其与
- 使用中专API实现AI模型调用与部署
llzwxh888
人工智能easyui前端python
在AI技术领域,如何调用和部署大语言模型(LLM)是一个常见的需求。本文将详细介绍如何通过中专API地址http://api.wlai.vip,实现对OpenAI大模型的调用与部署,并提供一个详细的demo代码示例。引言随着人工智能技术的飞速发展,大语言模型在自然语言处理任务中的表现尤为突出。然而,由于国内访问海外API存在一定限制,本文将使用中专API地址来解决这一问题,并展示如何在本地环境中配
- 大模型框架:vLLM
m0_37559973
大模型大模型通义千问Qwen
目录一、vLLM介绍二、安装vLLM2.1使用GPU进行安装2.2使用CPU进行安装2.3相关配置三、使用vLLM3.1离线推理3.2适配OpenAI-API的API服务一、vLLM介绍vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架。它利用了全新的注意力算法「PagedAttention」,提供易用、快速、便宜的LLM服务。二、安装vLLM2.1使用GPU进行安装vLLM是一个Py
- 多模态大语言模型(MLLMs)-一般架构(非常详细)零基础入门到精通,收藏这一篇就够了
程序员_大白
语言模型人工智能自然语言处理
多模态大语言模型(MultimodalLargeLanguageModel,MLLM),在LLM原有的强大泛化和推理能力基础上,进一步引入了多模态信息处理能力。相比于以往的多模态方法,例如以CLIP为代表的判别式,或以OFA为代表的生成式,新兴的MLLM展现出一些典型的特质,在下面这两种特质的加持下,MLLM涌现出一些以往多模态模型所不具备的能力!模型大。MLLM通常具有数十亿的参数量,更多的参数
- 大规模语言模型从理论到实践 vLLM推理框架实践
AGI通用人工智能之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践:vLLM推理框架实践1.背景介绍1.1问题的由来随着大规模语言模型(LargeLanguageModels,vLLMs)的发展,从简单的语言生成到复杂的多模态任务,这些模型的能力得到了显著提升。然而,如何高效地利用这些模型进行推理成为了新的挑战。传统的方法往往受限于模型的输入长度、计算资源的限制以及缺乏有效的任务分解策略。为了解决这些问题,vLLM推理框架应运而生,旨在
- 使用 Apache Cassandra 实现 LLM 缓存:提升 AI 应用性能的实用指南
afTFODguAKBF
apache缓存人工智能python
使用ApacheCassandra实现LLM缓存:提升AI应用性能的实用指南引言在当今的AI驱动的应用程序中,大语言模型(LLM)扮演着越来越重要的角色。然而,频繁调用LLMAPI不仅会增加延迟,还会导致高昂的成本。为了解决这个问题,实现有效的缓存策略变得至关重要。本文将介绍如何使用ApacheCassandra®或AstraDB来实现LLM缓存,从而显著提升您的AI应用性能和成本效率。为什么选择
- MongoDB Atlas与LangChain集成指南
afTFODguAKBF
mongodblangchain数据库python
引言MongoDBAtlas是一款全托管的云数据库解决方案,可在AWS、Azure和GCP上使用。最新版本支持在MongoDB文档数据上进行原生向量搜索。本文将介绍如何使用LangChain将MongoDBAtlas与语言模型集成,以实现高效的向量搜索和语义缓存。安装和设置1.安装langchain-mongodb包pipinstalllangchain-mongodb向量存储LangChain提
- 使用Fireworks API和LangChain构建高效的AI应用
afTFODguAKBF
langchain人工智能easyuipython
使用FireworksAPI和LangChain构建高效的AI应用引言在当今快速发展的AI领域,能够快速、高效地构建和部署AI应用变得越来越重要。FireworksAI提供了强大的API服务,而LangChain则是一个灵活的框架,可以帮助开发者更容易地构建基于大语言模型的应用。本文将介绍如何结合FireworksAPI和LangChain来创建高效的AI应用,并提供实用的代码示例和最佳实践。Fi
- 反思的魔力:用语言的力量强化AI智能体
步子哥
人工智能机器学习
在浩瀚的代码海洋中,AI智能体就像初出茅庐的航海家,渴望探索未知的宝藏。然而,面对复杂的编程任务,他们常常迷失方向。今天,就让我们跟随“反思”的灯塔,见证AI智能体如何通过语言的力量,点亮智慧的明灯,成为代码世界的征服者!智能体的困境近年来,大型语言模型(LLM)在与外部环境(如游戏、编译器、API)交互的领域中大放异彩,化身为目标驱动的智能体。然而,传统的强化学习方法如同一位严苛的训练师,需要大
- 大模型微调 - 基于预训练大语言模型的对话生成任务 训练代码
西笑生
大模型大模型自然语言处理微调
大模型微调-基于预训练大语言模型的对话生成任务训练代码flyfish模型扮演堂吉诃德这个角色,回答关于自我介绍的问题importtorchfromdatasetsimportDatasetfrommodelscopeimportAutoTokenizer,AutoModelForCausalLMfrompeftimportLoraConfig,TaskType,get_peft_modelfrom
- 天下苦英伟达久矣!PyTorch官方免CUDA加速推理,Triton时代要来?
诗者才子酒中仙
物联网/互联网/人工智能/其他pytorch人工智能python
在做大语言模型(LLM)的训练、微调和推理时,使用英伟达的GPU和CUDA是常见的做法。在更大的机器学习编程与计算范畴,同样严重依赖CUDA,使用它加速的机器学习模型可以实现更大的性能提升。虽然CUDA在加速计算领域占据主导地位,并成为英伟达重要的护城河之一。但其他一些工作的出现正在向CUDA发起挑战,比如OpenAI推出的Triton,它在可用性、内存开销、AI编译器堆栈构建等方面具有一定的优势
- 零基础入门AI:一键本地运行各种开源大语言模型 - Ollama
AI大模型知识分享
人工智能开源语言模型pytorchgpt-3chatgptopenvino
什么是Ollama?Ollama是一个可以在本地部署和管理开源大语言模型的框架,由于它极大的简化了开源大语言模型的安装和配置细节,一经推出就广受好评,目前已在github上获得了46kstar。不管是著名的羊驼系列,还是最新的AI新贵Mistral,等等各种开源大语言模型,都可以用Ollama实现一键安装并运行,支持的更多模型的列表可以查看Ollama官网。ModelParametersSizeD
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默