自学SLAM(9)《第五讲:特征点法视觉里程计》作业

文章目录

  • 1.ORB特征点
    • 1.1 ORB提取
    • 1.2 ORB描述
    • 1.3 暴力匹配
    • 1.4 最后,请结合实验,回答下⾯⼏个问题
  • 2.从 E 恢复 R,t
  • 3.用 G-N 实现 Bundle Adjustment
  • 4.* 用 ICP 实现轨迹对齐


自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第1张图片

1.ORB特征点

1.1 ORB提取

ORB(Oriented FAST and BRIEF) 特征是 SLAM 中⼀种很常⽤的特征,由于其⼆进制特性,使得它可以⾮常快速地提取与计算 [1]。下⾯,你将按照本题的指导,⾃⾏书写 ORB 的提取、描述⼦的计算以及匹配的代码。代码框架参照computeORB.cpp ⽂件,图像见 1.png ⽂件和 2.png。
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第2张图片

1.2 ORB描述

自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第3张图片

1.3 暴力匹配

自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第4张图片
提⽰:

  1. 你需要按位计算两个描述⼦之间的汉明距离。
  2. OpenCV 的 DMatch 结构, queryIdx 为第⼀图的特征 ID, trainIdx 为第⼆个图的特征 ID。
  3. 作为验证,匹配之后输出图像应如图 2 所⽰。

1.4 最后,请结合实验,回答下⾯⼏个问题

最后,请结合实验,回答下⾯⼏个问题:

  1. 为什么说 ORB 是⼀种⼆进制特征?
  2. 为什么在匹配时使⽤ 50 作为阈值,取更⼤或更⼩值会怎么样?
  3. 暴⼒匹配在你的机器上表现如何?你能想到什么减少计算量的匹配⽅法吗?

我直接把1.1,1.2,1.3的代码和结果放到一起
computeORB.cpp:

#include 

#include 

using namespace std;

// global variables
string first_file = "../1.png";
string second_file = "../2.png";

const double pi = 3.1415926;    // pi


// TODO implement this function
/**
 * compute the angle for ORB descriptor
 * @param [in] image input image
 * @param [in|out] detected keypoints
 */
void computeAngle(const cv::Mat &image, vector<cv::KeyPoint> &keypoints);

// TODO implement this function
/**
 * compute ORB descriptor
 * @param [in] image the input image
 * @param [in] keypoints detected keypoints
 * @param [out] desc descriptor
 */
typedef vector<bool> DescType;  // type of descriptor, 256 bools
void computeORBDesc(const cv::Mat &image, vector<cv::KeyPoint> &keypoints, vector<DescType> &desc);

// TODO implement this function
/**
 * brute-force match two sets of descriptors
 * @param desc1 the first descriptor
 * @param desc2 the second descriptor
 * @param matches matches of two images
 */
void bfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches);

int main(int argc, char **argv) {

    // load image
    cv::Mat first_image = cv::imread(first_file, 0);    // load grayscale image
    cv::Mat second_image = cv::imread(second_file, 0);  // load grayscale image

    // plot the image
    cv::imshow("first image", first_image);
    cv::imshow("second image", second_image);
    cv::waitKey(0);

    // detect FAST keypoints using threshold=40
    vector<cv::KeyPoint> keypoints;
    cv::FAST(first_image, keypoints, 40);
    cout << "keypoints: " << keypoints.size() << endl;

    // compute angle for each keypoint
    computeAngle(first_image, keypoints);

    // compute ORB descriptors
    vector<DescType> descriptors;
    computeORBDesc(first_image, keypoints, descriptors);

    // plot the keypoints
    cv::Mat image_show;
    cv::drawKeypoints(first_image, keypoints, image_show, cv::Scalar::all(-1),
                      cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    cv::imshow("features", image_show);
    cv::imwrite("feat1.png", image_show);
    cv::waitKey(0);

    // we can also match descriptors between images
    // same for the second
    vector<cv::KeyPoint> keypoints2;
    cv::FAST(second_image, keypoints2, 40);
    cout << "keypoints: " << keypoints2.size() << endl;

    // compute angle for each keypoint
    computeAngle(second_image, keypoints2);

    // compute ORB descriptors
    vector<DescType> descriptors2;
    computeORBDesc(second_image, keypoints2, descriptors2);

    // find matches
    vector<cv::DMatch> matches;
    bfMatch(descriptors, descriptors2, matches);
    cout << "matches: " << matches.size() << endl;

    // plot the matches
    cv::drawMatches(first_image, keypoints, second_image, keypoints2, matches, image_show);
    cv::imshow("matches", image_show);
    cv::imwrite("matches.png", image_show);
    cv::waitKey(0);

    cout << "done." << endl;
    return 0;
}

// -------------------------------------------------------------------------------------------------- //

// compute the angle
void computeAngle(const cv::Mat &image, vector<cv::KeyPoint> &keypoints) {
    int half_patch_size = 8;
    for (auto &kp : keypoints) {
	// START YOUR CODE HERE (~7 lines)
         //judge if keypoint is on edge
        int x=cvRound(kp.pt.x);
        int y=cvRound(kp.pt.y);
        if( x-half_patch_size<0||x+half_patch_size>image.cols||
            y-half_patch_size<0||y+half_patch_size>image.rows)
            continue;  //结束当前循环,进入到下一次循环
        double m01=0,m10=0;   //定义变量的时候,要初始化,不然这里第一张图片所有kp.angle=0
        for(int i=-half_patch_size;i<half_patch_size;i++){    //-8
            for(int j=-half_patch_size;j<half_patch_size;j++){
                m01 += j*image.at<uchar>(y+j,x+i);              //真实坐标(j,i)+(y,x)
                m10 += i*image.at<uchar>(y+j,x+i);              //获得单个像素值image.at(y,x)
            }
        }
        kp.angle = atan(m01/m10)*180/pi;
        cout<<"m10 = "<<m01<<"   "<<"m01 = "<<m10<<"  "<<"kp.angle = "<<kp.angle<<endl;
        // END YOUR CODE HERE
    }
    return;
}

// -------------------------------------------------------------------------------------------------- //
// ORB pattern
int ORB_pattern[256 * 4] = {
        8, -3, 9, 5/*mean (0), correlation (0)*/,
        4, 2, 7, -12/*mean (1.12461e-05), correlation (0.0437584)*/,
        -11, 9, -8, 2/*mean (3.37382e-05), correlation (0.0617409)*/,
        7, -12, 12, -13/*mean (5.62303e-05), correlation (0.0636977)*/,
        2, -13, 2, 12/*mean (0.000134953), correlation (0.085099)*/,
        1, -7, 1, 6/*mean (0.000528565), correlation (0.0857175)*/,
        -2, -10, -2, -4/*mean (0.0188821), correlation (0.0985774)*/,
        -13, -13, -11, -8/*mean (0.0363135), correlation (0.0899616)*/,
        -13, -3, -12, -9/*mean (0.121806), correlation (0.099849)*/,
        10, 4, 11, 9/*mean (0.122065), correlation (0.093285)*/,
        -13, -8, -8, -9/*mean (0.162787), correlation (0.0942748)*/,
        -11, 7, -9, 12/*mean (0.21561), correlation (0.0974438)*/,
        7, 7, 12, 6/*mean (0.160583), correlation (0.130064)*/,
        -4, -5, -3, 0/*mean (0.228171), correlation (0.132998)*/,
        -13, 2, -12, -3/*mean (0.00997526), correlation (0.145926)*/,
        -9, 0, -7, 5/*mean (0.198234), correlation (0.143636)*/,
        12, -6, 12, -1/*mean (0.0676226), correlation (0.16689)*/,
        -3, 6, -2, 12/*mean (0.166847), correlation (0.171682)*/,
        -6, -13, -4, -8/*mean (0.101215), correlation (0.179716)*/,
        11, -13, 12, -8/*mean (0.200641), correlation (0.192279)*/,
        4, 7, 5, 1/*mean (0.205106), correlation (0.186848)*/,
        5, -3, 10, -3/*mean (0.234908), correlation (0.192319)*/,
        3, -7, 6, 12/*mean (0.0709964), correlation (0.210872)*/,
        -8, -7, -6, -2/*mean (0.0939834), correlation (0.212589)*/,
        -2, 11, -1, -10/*mean (0.127778), correlation (0.20866)*/,
        -13, 12, -8, 10/*mean (0.14783), correlation (0.206356)*/,
        -7, 3, -5, -3/*mean (0.182141), correlation (0.198942)*/,
        -4, 2, -3, 7/*mean (0.188237), correlation (0.21384)*/,
        -10, -12, -6, 11/*mean (0.14865), correlation (0.23571)*/,
        5, -12, 6, -7/*mean (0.222312), correlation (0.23324)*/,
        5, -6, 7, -1/*mean (0.229082), correlation (0.23389)*/,
        1, 0, 4, -5/*mean (0.241577), correlation (0.215286)*/,
        9, 11, 11, -13/*mean (0.00338507), correlation (0.251373)*/,
        4, 7, 4, 12/*mean (0.131005), correlation (0.257622)*/,
        2, -1, 4, 4/*mean (0.152755), correlation (0.255205)*/,
        -4, -12, -2, 7/*mean (0.182771), correlation (0.244867)*/,
        -8, -5, -7, -10/*mean (0.186898), correlation (0.23901)*/,
        4, 11, 9, 12/*mean (0.226226), correlation (0.258255)*/,
        0, -8, 1, -13/*mean (0.0897886), correlation (0.274827)*/,
        -13, -2, -8, 2/*mean (0.148774), correlation (0.28065)*/,
        -3, -2, -2, 3/*mean (0.153048), correlation (0.283063)*/,
        -6, 9, -4, -9/*mean (0.169523), correlation (0.278248)*/,
        8, 12, 10, 7/*mean (0.225337), correlation (0.282851)*/,
        0, 9, 1, 3/*mean (0.226687), correlation (0.278734)*/,
        7, -5, 11, -10/*mean (0.00693882), correlation (0.305161)*/,
        -13, -6, -11, 0/*mean (0.0227283), correlation (0.300181)*/,
        10, 7, 12, 1/*mean (0.125517), correlation (0.31089)*/,
        -6, -3, -6, 12/*mean (0.131748), correlation (0.312779)*/,
        10, -9, 12, -4/*mean (0.144827), correlation (0.292797)*/,
        -13, 8, -8, -12/*mean (0.149202), correlation (0.308918)*/,
        -13, 0, -8, -4/*mean (0.160909), correlation (0.310013)*/,
        3, 3, 7, 8/*mean (0.177755), correlation (0.309394)*/,
        5, 7, 10, -7/*mean (0.212337), correlation (0.310315)*/,
        -1, 7, 1, -12/*mean (0.214429), correlation (0.311933)*/,
        3, -10, 5, 6/*mean (0.235807), correlation (0.313104)*/,
        2, -4, 3, -10/*mean (0.00494827), correlation (0.344948)*/,
        -13, 0, -13, 5/*mean (0.0549145), correlation (0.344675)*/,
        -13, -7, -12, 12/*mean (0.103385), correlation (0.342715)*/,
        -13, 3, -11, 8/*mean (0.134222), correlation (0.322922)*/,
        -7, 12, -4, 7/*mean (0.153284), correlation (0.337061)*/,
        6, -10, 12, 8/*mean (0.154881), correlation (0.329257)*/,
        -9, -1, -7, -6/*mean (0.200967), correlation (0.33312)*/,
        -2, -5, 0, 12/*mean (0.201518), correlation (0.340635)*/,
        -12, 5, -7, 5/*mean (0.207805), correlation (0.335631)*/,
        3, -10, 8, -13/*mean (0.224438), correlation (0.34504)*/,
        -7, -7, -4, 5/*mean (0.239361), correlation (0.338053)*/,
        -3, -2, -1, -7/*mean (0.240744), correlation (0.344322)*/,
        2, 9, 5, -11/*mean (0.242949), correlation (0.34145)*/,
        -11, -13, -5, -13/*mean (0.244028), correlation (0.336861)*/,
        -1, 6, 0, -1/*mean (0.247571), correlation (0.343684)*/,
        5, -3, 5, 2/*mean (0.000697256), correlation (0.357265)*/,
        -4, -13, -4, 12/*mean (0.00213675), correlation (0.373827)*/,
        -9, -6, -9, 6/*mean (0.0126856), correlation (0.373938)*/,
        -12, -10, -8, -4/*mean (0.0152497), correlation (0.364237)*/,
        10, 2, 12, -3/*mean (0.0299933), correlation (0.345292)*/,
        7, 12, 12, 12/*mean (0.0307242), correlation (0.366299)*/,
        -7, -13, -6, 5/*mean (0.0534975), correlation (0.368357)*/,
        -4, 9, -3, 4/*mean (0.099865), correlation (0.372276)*/,
        7, -1, 12, 2/*mean (0.117083), correlation (0.364529)*/,
        -7, 6, -5, 1/*mean (0.126125), correlation (0.369606)*/,
        -13, 11, -12, 5/*mean (0.130364), correlation (0.358502)*/,
        -3, 7, -2, -6/*mean (0.131691), correlation (0.375531)*/,
        7, -8, 12, -7/*mean (0.160166), correlation (0.379508)*/,
        -13, -7, -11, -12/*mean (0.167848), correlation (0.353343)*/,
        1, -3, 12, 12/*mean (0.183378), correlation (0.371916)*/,
        2, -6, 3, 0/*mean (0.228711), correlation (0.371761)*/,
        -4, 3, -2, -13/*mean (0.247211), correlation (0.364063)*/,
        -1, -13, 1, 9/*mean (0.249325), correlation (0.378139)*/,
        7, 1, 8, -6/*mean (0.000652272), correlation (0.411682)*/,
        1, -1, 3, 12/*mean (0.00248538), correlation (0.392988)*/,
        9, 1, 12, 6/*mean (0.0206815), correlation (0.386106)*/,
        -1, -9, -1, 3/*mean (0.0364485), correlation (0.410752)*/,
        -13, -13, -10, 5/*mean (0.0376068), correlation (0.398374)*/,
        7, 7, 10, 12/*mean (0.0424202), correlation (0.405663)*/,
        12, -5, 12, 9/*mean (0.0942645), correlation (0.410422)*/,
        6, 3, 7, 11/*mean (0.1074), correlation (0.413224)*/,
        5, -13, 6, 10/*mean (0.109256), correlation (0.408646)*/,
        2, -12, 2, 3/*mean (0.131691), correlation (0.416076)*/,
        3, 8, 4, -6/*mean (0.165081), correlation (0.417569)*/,
        2, 6, 12, -13/*mean (0.171874), correlation (0.408471)*/,
        9, -12, 10, 3/*mean (0.175146), correlation (0.41296)*/,
        -8, 4, -7, 9/*mean (0.183682), correlation (0.402956)*/,
        -11, 12, -4, -6/*mean (0.184672), correlation (0.416125)*/,
        1, 12, 2, -8/*mean (0.191487), correlation (0.386696)*/,
        6, -9, 7, -4/*mean (0.192668), correlation (0.394771)*/,
        2, 3, 3, -2/*mean (0.200157), correlation (0.408303)*/,
        6, 3, 11, 0/*mean (0.204588), correlation (0.411762)*/,
        3, -3, 8, -8/*mean (0.205904), correlation (0.416294)*/,
        7, 8, 9, 3/*mean (0.213237), correlation (0.409306)*/,
        -11, -5, -6, -4/*mean (0.243444), correlation (0.395069)*/,
        -10, 11, -5, 10/*mean (0.247672), correlation (0.413392)*/,
        -5, -8, -3, 12/*mean (0.24774), correlation (0.411416)*/,
        -10, 5, -9, 0/*mean (0.00213675), correlation (0.454003)*/,
        8, -1, 12, -6/*mean (0.0293635), correlation (0.455368)*/,
        4, -6, 6, -11/*mean (0.0404971), correlation (0.457393)*/,
        -10, 12, -8, 7/*mean (0.0481107), correlation (0.448364)*/,
        4, -2, 6, 7/*mean (0.050641), correlation (0.455019)*/,
        -2, 0, -2, 12/*mean (0.0525978), correlation (0.44338)*/,
        -5, -8, -5, 2/*mean (0.0629667), correlation (0.457096)*/,
        7, -6, 10, 12/*mean (0.0653846), correlation (0.445623)*/,
        -9, -13, -8, -8/*mean (0.0858749), correlation (0.449789)*/,
        -5, -13, -5, -2/*mean (0.122402), correlation (0.450201)*/,
        8, -8, 9, -13/*mean (0.125416), correlation (0.453224)*/,
        -9, -11, -9, 0/*mean (0.130128), correlation (0.458724)*/,
        1, -8, 1, -2/*mean (0.132467), correlation (0.440133)*/,
        7, -4, 9, 1/*mean (0.132692), correlation (0.454)*/,
        -2, 1, -1, -4/*mean (0.135695), correlation (0.455739)*/,
        11, -6, 12, -11/*mean (0.142904), correlation (0.446114)*/,
        -12, -9, -6, 4/*mean (0.146165), correlation (0.451473)*/,
        3, 7, 7, 12/*mean (0.147627), correlation (0.456643)*/,
        5, 5, 10, 8/*mean (0.152901), correlation (0.455036)*/,
        0, -4, 2, 8/*mean (0.167083), correlation (0.459315)*/,
        -9, 12, -5, -13/*mean (0.173234), correlation (0.454706)*/,
        0, 7, 2, 12/*mean (0.18312), correlation (0.433855)*/,
        -1, 2, 1, 7/*mean (0.185504), correlation (0.443838)*/,
        5, 11, 7, -9/*mean (0.185706), correlation (0.451123)*/,
        3, 5, 6, -8/*mean (0.188968), correlation (0.455808)*/,
        -13, -4, -8, 9/*mean (0.191667), correlation (0.459128)*/,
        -5, 9, -3, -3/*mean (0.193196), correlation (0.458364)*/,
        -4, -7, -3, -12/*mean (0.196536), correlation (0.455782)*/,
        6, 5, 8, 0/*mean (0.1972), correlation (0.450481)*/,
        -7, 6, -6, 12/*mean (0.199438), correlation (0.458156)*/,
        -13, 6, -5, -2/*mean (0.211224), correlation (0.449548)*/,
        1, -10, 3, 10/*mean (0.211718), correlation (0.440606)*/,
        4, 1, 8, -4/*mean (0.213034), correlation (0.443177)*/,
        -2, -2, 2, -13/*mean (0.234334), correlation (0.455304)*/,
        2, -12, 12, 12/*mean (0.235684), correlation (0.443436)*/,
        -2, -13, 0, -6/*mean (0.237674), correlation (0.452525)*/,
        4, 1, 9, 3/*mean (0.23962), correlation (0.444824)*/,
        -6, -10, -3, -5/*mean (0.248459), correlation (0.439621)*/,
        -3, -13, -1, 1/*mean (0.249505), correlation (0.456666)*/,
        7, 5, 12, -11/*mean (0.00119208), correlation (0.495466)*/,
        4, -2, 5, -7/*mean (0.00372245), correlation (0.484214)*/,
        -13, 9, -9, -5/*mean (0.00741116), correlation (0.499854)*/,
        7, 1, 8, 6/*mean (0.0208952), correlation (0.499773)*/,
        7, -8, 7, 6/*mean (0.0220085), correlation (0.501609)*/,
        -7, -4, -7, 1/*mean (0.0233806), correlation (0.496568)*/,
        -8, 11, -7, -8/*mean (0.0236505), correlation (0.489719)*/,
        -13, 6, -12, -8/*mean (0.0268781), correlation (0.503487)*/,
        2, 4, 3, 9/*mean (0.0323324), correlation (0.501938)*/,
        10, -5, 12, 3/*mean (0.0399235), correlation (0.494029)*/,
        -6, -5, -6, 7/*mean (0.0420153), correlation (0.486579)*/,
        8, -3, 9, -8/*mean (0.0548021), correlation (0.484237)*/,
        2, -12, 2, 8/*mean (0.0616622), correlation (0.496642)*/,
        -11, -2, -10, 3/*mean (0.0627755), correlation (0.498563)*/,
        -12, -13, -7, -9/*mean (0.0829622), correlation (0.495491)*/,
        -11, 0, -10, -5/*mean (0.0843342), correlation (0.487146)*/,
        5, -3, 11, 8/*mean (0.0929937), correlation (0.502315)*/,
        -2, -13, -1, 12/*mean (0.113327), correlation (0.48941)*/,
        -1, -8, 0, 9/*mean (0.132119), correlation (0.467268)*/,
        -13, -11, -12, -5/*mean (0.136269), correlation (0.498771)*/,
        -10, -2, -10, 11/*mean (0.142173), correlation (0.498714)*/,
        -3, 9, -2, -13/*mean (0.144141), correlation (0.491973)*/,
        2, -3, 3, 2/*mean (0.14892), correlation (0.500782)*/,
        -9, -13, -4, 0/*mean (0.150371), correlation (0.498211)*/,
        -4, 6, -3, -10/*mean (0.152159), correlation (0.495547)*/,
        -4, 12, -2, -7/*mean (0.156152), correlation (0.496925)*/,
        -6, -11, -4, 9/*mean (0.15749), correlation (0.499222)*/,
        6, -3, 6, 11/*mean (0.159211), correlation (0.503821)*/,
        -13, 11, -5, 5/*mean (0.162427), correlation (0.501907)*/,
        11, 11, 12, 6/*mean (0.16652), correlation (0.497632)*/,
        7, -5, 12, -2/*mean (0.169141), correlation (0.484474)*/,
        -1, 12, 0, 7/*mean (0.169456), correlation (0.495339)*/,
        -4, -8, -3, -2/*mean (0.171457), correlation (0.487251)*/,
        -7, 1, -6, 7/*mean (0.175), correlation (0.500024)*/,
        -13, -12, -8, -13/*mean (0.175866), correlation (0.497523)*/,
        -7, -2, -6, -8/*mean (0.178273), correlation (0.501854)*/,
        -8, 5, -6, -9/*mean (0.181107), correlation (0.494888)*/,
        -5, -1, -4, 5/*mean (0.190227), correlation (0.482557)*/,
        -13, 7, -8, 10/*mean (0.196739), correlation (0.496503)*/,
        1, 5, 5, -13/*mean (0.19973), correlation (0.499759)*/,
        1, 0, 10, -13/*mean (0.204465), correlation (0.49873)*/,
        9, 12, 10, -1/*mean (0.209334), correlation (0.49063)*/,
        5, -8, 10, -9/*mean (0.211134), correlation (0.503011)*/,
        -1, 11, 1, -13/*mean (0.212), correlation (0.499414)*/,
        -9, -3, -6, 2/*mean (0.212168), correlation (0.480739)*/,
        -1, -10, 1, 12/*mean (0.212731), correlation (0.502523)*/,
        -13, 1, -8, -10/*mean (0.21327), correlation (0.489786)*/,
        8, -11, 10, -6/*mean (0.214159), correlation (0.488246)*/,
        2, -13, 3, -6/*mean (0.216993), correlation (0.50287)*/,
        7, -13, 12, -9/*mean (0.223639), correlation (0.470502)*/,
        -10, -10, -5, -7/*mean (0.224089), correlation (0.500852)*/,
        -10, -8, -8, -13/*mean (0.228666), correlation (0.502629)*/,
        4, -6, 8, 5/*mean (0.22906), correlation (0.498305)*/,
        3, 12, 8, -13/*mean (0.233378), correlation (0.503825)*/,
        -4, 2, -3, -3/*mean (0.234323), correlation (0.476692)*/,
        5, -13, 10, -12/*mean (0.236392), correlation (0.475462)*/,
        4, -13, 5, -1/*mean (0.236842), correlation (0.504132)*/,
        -9, 9, -4, 3/*mean (0.236977), correlation (0.497739)*/,
        0, 3, 3, -9/*mean (0.24314), correlation (0.499398)*/,
        -12, 1, -6, 1/*mean (0.243297), correlation (0.489447)*/,
        3, 2, 4, -8/*mean (0.00155196), correlation (0.553496)*/,
        -10, -10, -10, 9/*mean (0.00239541), correlation (0.54297)*/,
        8, -13, 12, 12/*mean (0.0034413), correlation (0.544361)*/,
        -8, -12, -6, -5/*mean (0.003565), correlation (0.551225)*/,
        2, 2, 3, 7/*mean (0.00835583), correlation (0.55285)*/,
        10, 6, 11, -8/*mean (0.00885065), correlation (0.540913)*/,
        6, 8, 8, -12/*mean (0.0101552), correlation (0.551085)*/,
        -7, 10, -6, 5/*mean (0.0102227), correlation (0.533635)*/,
        -3, -9, -3, 9/*mean (0.0110211), correlation (0.543121)*/,
        -1, -13, -1, 5/*mean (0.0113473), correlation (0.550173)*/,
        -3, -7, -3, 4/*mean (0.0140913), correlation (0.554774)*/,
        -8, -2, -8, 3/*mean (0.017049), correlation (0.55461)*/,
        4, 2, 12, 12/*mean (0.01778), correlation (0.546921)*/,
        2, -5, 3, 11/*mean (0.0224022), correlation (0.549667)*/,
        6, -9, 11, -13/*mean (0.029161), correlation (0.546295)*/,
        3, -1, 7, 12/*mean (0.0303081), correlation (0.548599)*/,
        11, -1, 12, 4/*mean (0.0355151), correlation (0.523943)*/,
        -3, 0, -3, 6/*mean (0.0417904), correlation (0.543395)*/,
        4, -11, 4, 12/*mean (0.0487292), correlation (0.542818)*/,
        2, -4, 2, 1/*mean (0.0575124), correlation (0.554888)*/,
        -10, -6, -8, 1/*mean (0.0594242), correlation (0.544026)*/,
        -13, 7, -11, 1/*mean (0.0597391), correlation (0.550524)*/,
        -13, 12, -11, -13/*mean (0.0608974), correlation (0.55383)*/,
        6, 0, 11, -13/*mean (0.065126), correlation (0.552006)*/,
        0, -1, 1, 4/*mean (0.074224), correlation (0.546372)*/,
        -13, 3, -9, -2/*mean (0.0808592), correlation (0.554875)*/,
        -9, 8, -6, -3/*mean (0.0883378), correlation (0.551178)*/,
        -13, -6, -8, -2/*mean (0.0901035), correlation (0.548446)*/,
        5, -9, 8, 10/*mean (0.0949843), correlation (0.554694)*/,
        2, 7, 3, -9/*mean (0.0994152), correlation (0.550979)*/,
        -1, -6, -1, -1/*mean (0.10045), correlation (0.552714)*/,
        9, 5, 11, -2/*mean (0.100686), correlation (0.552594)*/,
        11, -3, 12, -8/*mean (0.101091), correlation (0.532394)*/,
        3, 0, 3, 5/*mean (0.101147), correlation (0.525576)*/,
        -1, 4, 0, 10/*mean (0.105263), correlation (0.531498)*/,
        3, -6, 4, 5/*mean (0.110785), correlation (0.540491)*/,
        -13, 0, -10, 5/*mean (0.112798), correlation (0.536582)*/,
        5, 8, 12, 11/*mean (0.114181), correlation (0.555793)*/,
        8, 9, 9, -6/*mean (0.117431), correlation (0.553763)*/,
        7, -4, 8, -12/*mean (0.118522), correlation (0.553452)*/,
        -10, 4, -10, 9/*mean (0.12094), correlation (0.554785)*/,
        7, 3, 12, 4/*mean (0.122582), correlation (0.555825)*/,
        9, -7, 10, -2/*mean (0.124978), correlation (0.549846)*/,
        7, 0, 12, -2/*mean (0.127002), correlation (0.537452)*/,
        -1, -6, 0, -11/*mean (0.127148), correlation (0.547401)*/
};

// compute the descriptor
void computeORBDesc(const cv::Mat &image, vector<cv::KeyPoint> &keypoints, vector<DescType> &desc) {
    for (auto &kp: keypoints) {
        DescType d(256, false);
        for (int i = 0; i < 256; i++) {
            // START YOUR CODE HERE (~7 lines)
            auto cos_ = float(cos(kp.angle*pi/180)); //将角度转换成弧度再进行cos、sin的计算
            auto sin_ = float(sin(kp.angle*pi/180));
            //注意pattern中的数如何取
            cv::Point2f p_r(cos_*ORB_pattern[4*i]-sin_*ORB_pattern[4*i+1],
                    sin_*ORB_pattern[4*i]+cos_*ORB_pattern[4*i+1]);
            cv::Point2f q_r(cos_*ORB_pattern[4*i+2]-sin_*ORB_pattern[4*i+3],
                    sin_*ORB_pattern[4*i+2]+cos_*ORB_pattern[4*i+3]);
 
            cv::Point2f p(kp.pt+p_r); //获取p'与q'的真实坐标,才能获得其像素值
            cv::Point2f q(kp.pt+q_r);
 
            // if kp goes outside, set d.clear()
            if(p.x<0||p.y<0||p.x>image.cols||p.y>image.rows||
            q.x<0||q.y<0||q.x>image.cols||q.y>image.rows){
                d.clear();
                break;
            }
            //像素值比较
             d[i]=image.at<uchar>(p)>image.at<uchar>(q)?0:1; 
	    // END YOUR CODE HERE
        }
        desc.push_back(d);
    }

    int bad = 0;
    for (auto &d: desc) {
        if (d.empty()) bad++;
    }
    cout << "bad/total: " << bad << "/" << desc.size() << endl;
    return;
}

// brute-force matching
void bfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
    int d_max = 50;

    // START YOUR CODE HERE (~12 lines)
    // find matches between desc1 and desc2. 
    for(int i=0;i<desc1.size();i++){
        if(desc1[i].empty())
            continue;
        int d_min=256 ,index=-1; //必须定义在这里,每次循环重新初始化
        for(int j=0;j<desc2.size();j++){ //这个for循环,取出最小的d_min
            if(desc2[j].empty())
                continue;
            int d=0; //必须定义在这里,每次循环重新初始化
            for(int k=0;k<256;k++){
                d += desc1[i][k]^desc2[j][k]; //异或:不同为1;
            }
            if(d<d_min){
                d_min=d;
                index=j;
            }
        }
        if(d_min<=d_max){
            cv::DMatch match(i,index,d_min);
            matches.push_back(match);
        }
    }
    // END YOUR CODE HERE

    for (auto &m: matches) {
        cout << m.queryIdx << ", " << m.trainIdx << ", " << m.distance << endl;
    }
    return;
}

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project(stereoVision)
set( CMAKE_CXX_FLAGS "-std=c++11 -O3")
 
include_directories("/usr/include/eigen3")
find_package(Pangolin REQUIRED)
include_directories( ${Pangolin_INCLUDE_DIRS} )
 
find_package(OpenCV 3.0 QUIET) #find_package(<Name>)命令首先会在模块路径中寻找 Find<name>.cmake
if(NOT OpenCV_FOUND)
    find_package(OpenCV 2.4.3 QUIET)
    if(NOT OpenCV_FOUND)
        message(FATAL_ERROR "OpenCV > 2.4.3 not found.")
    endif()
endif()

include_directories(${OpenCV_INCLUDE_DIRS})

add_executable(computeORB computeORB.cpp)
target_link_libraries(computeORB ${OpenCV_LIBS})

然后就是五件套
mkdir build
cd build
cmake …
make
./computeORB

自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第5张图片


然后是简答题:

1.为什么说 ORB 是⼀种⼆进制特征?
ORB使用改进的BRIEF特征描述,而BRIEF是一种二进制的描述子,其描述向量由许多个0和1组成。也就是说ORB采用二进制的描述子用来描述每个特征点的特征信息。

2.为什么在匹配时使⽤ 50 作为阈值,取更⼤或更⼩值会怎么样? 当阈值为50的时候,可以检测出的特征对有95个匹配的特征对。但存在一些误匹配的点对。

当阈值为30的时候,可以检测到的特征点对很少,当然我还检测了20的时候,到20就一对特征点对也检测不出来了。

当阈值设置为90时,可以检测到非常多的个点对,误匹配很多

3.暴⼒匹配在你的机器上表现如何?你能想到什么减少计算量的匹配⽅法吗? 在这里插入图片描述
运行时间如图所示,使用快速近似最近邻的方法(FLANN)。
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第6张图片

2.从 E 恢复 R,t

自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第7张图片
首先说一下运行中碰到的问题吧:
第一个问题:
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第8张图片
如果碰到这个情况,那就是我们的E2Rt文件中找不到#include ,只需要改为#include 就可以了。
第二个问题:

自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第9张图片
如果是这种情况,我们就需要把E2Rt文件中62、63行的(文件中所有的)so3d改为so3即可。

E2Rt.cpp

#include 
#include 
#include 

using namespace Eigen;

#include 

#include 

using namespace std;

int main(int argc, char **argv) {

    // 给定Essential矩阵
    Matrix3d E;
    E << -0.0203618550523477, -0.4007110038118445, -0.03324074249824097,
            0.3939270778216369, -0.03506401846698079, 0.5857110303721015,
            -0.006788487241438284, -0.5815434272915686, -0.01438258684486258;

    // 待计算的R,t
    Matrix3d R;
    Vector3d t;

    // SVD and fix sigular values
    // START YOUR CODE HERE
      JacobiSVD<MatrixXd> svd(E,ComputeThinU | ComputeThinV);
    Matrix3d U=svd.matrixU();
    Matrix3d V=svd.matrixV();
    VectorXd sigma_value=svd.singularValues();
    Matrix3d SIGMA=U.inverse()*E*V.transpose().inverse();
    Vector3d sigma_value2={(sigma_value[0]+sigma_value[1])/2,(sigma_value[0]+sigma_value[1])/2,0};
    Matrix3d SIGMA2=sigma_value2.asDiagonal();
    cout<<"SIGMA=\n"<<SIGMA<<endl;
    cout<<"sigma_value=\n"<<sigma_value<<endl;
    cout<<"SIGMA2=\n"<<SIGMA<<endl;
    cout<<"sigma_value2=\n"<<sigma_value<<endl;
    // END YOUR CODE HERE

    // set t1, t2, R1, R2 
    // START YOUR CODE HERE
    Matrix3d t_wedge1;
    Matrix3d t_wedge2;

    Matrix3d R1;
    Matrix3d R2;
     Matrix3d RZ1=AngleAxisd(M_PI/2,Vector3d(0,0,1)).toRotationMatrix();
    Matrix3d RZ2=AngleAxisd(-M_PI/2,Vector3d(0,0,1)).toRotationMatrix();
    t_wedge1=U*RZ1*SIGMA2*U.transpose();
    t_wedge2=U*RZ2*SIGMA2*U.transpose();
    R1=U*RZ1.transpose()*V.transpose();
    R2=U*RZ2.transpose()*V.transpose();
    // END YOUR CODE HERE

    cout << "R1 = " << R1 << endl;
    cout << "R2 = " << R2 << endl;
    cout << "t1 = " << Sophus::SO3::vee(t_wedge1) << endl;
    cout << "t2 = " << Sophus::SO3::vee(t_wedge2) << endl;

    // check t^R=E up to scale
    Matrix3d tR = t_wedge1 * R1;
    cout << "t^R = " << tR << endl;

    return 0;
}

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)
project(E2RT)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE "Release")

#添加头文件
include_directories( "/usr/include/eigen3")
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})

add_executable(E2Rt E2Rt.cpp)
#链接OpenCV库
target_link_libraries(E2Rt ${Sophus_LIBRARIES})

运行结果如下:
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第10张图片

3.用 G-N 实现 Bundle Adjustment

自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第11张图片
这里如果cmake …
make有问题的话,和上一题的解决方法是一样的。

GN-BA.cpp

#include 
#include 

using namespace Eigen;

#include 
#include 
#include 
#include 

#include "sophus/se3.h"

using namespace std;

typedef vector<Vector3d, Eigen::aligned_allocator<Vector3d>> VecVector3d;
typedef vector<Vector2d, Eigen::aligned_allocator<Vector3d>> VecVector2d;
typedef Matrix<double, 6, 1> Vector6d;

string p3d_file = "../p3d.txt";
string p2d_file = "../p2d.txt";

int main(int argc, char **argv) {

    VecVector2d p2d;
    VecVector3d p3d;
    Matrix3d K;
    double fx = 520.9, fy = 521.0, cx = 325.1, cy = 249.7;
    K << fx, 0, cx, 0, fy, cy, 0, 0, 1;

    // load points in to p3d and p2d 
    // START YOUR CODE HERE
    ifstream p3d_fin(p3d_file);
    ifstream p2d_fin(p2d_file);
    Vector3d p3d_input;
    Vector2d p2d_input;
    if (!p3d_fin) {
        cerr << "p3d_fin " << p3d_file << " not found." << endl;
    }
    while (!p3d_fin.eof()) {
        p3d_fin >> p3d_input(0) >> p3d_input(1) >> p3d_input(2);
        p3d.push_back(p3d_input);
    }
    p3d_fin.close();

    if (!p2d_fin) {
        cerr << "p2d_fin " << p2d_file << " not found." << endl;
    }
    while (!p2d_fin.eof()) {
        p2d_fin >> p2d_input(0) >> p2d_input(1);
        p2d.push_back(p2d_input);
    }
    p2d_fin.close();
    // END YOUR CODE HERE
    assert(p3d.size() == p2d.size());

    int iterations = 100;
    double cost = 0, lastCost = 0;
    int nPoints = p3d.size();
    cout << "points: " << nPoints << endl;

    Sophus::SE3 T_esti; // estimated pose

    for (int iter = 0; iter < iterations; iter++) {

        Matrix<double, 6, 6> H = Matrix<double, 6, 6>::Zero();
        Vector6d b = Vector6d::Zero();

        cost = 0;
        // compute cost
        for (int i = 0; i < nPoints; i++) {
            // compute cost for p3d[I] and p2d[I]
            // START YOUR CODE HERE 
            Eigen::Vector3d pc = T_esti * p3d[i];
            Eigen::Vector2d proj(fx * pc[0] / pc[2] + cx, fy * pc[1] / pc[2] + cy);
            Eigen::Vector2d e = p2d[i] - proj;

            cost += e.squaredNorm()/2;
	    // END YOUR CODE HERE

	    // compute jacobian
            Matrix<double, 2, 6> J;
            // START YOUR CODE HERE
            double inv_z = 1.0 / pc[2];
            double inv_z2 = inv_z * inv_z;
            J << -fx * inv_z,
                    0,
                    fx * pc[0] * inv_z2,
                    fx * pc[0] * pc[1] * inv_z2,
                    -fx - fx * pc[0] * pc[0] * inv_z2,
                    fx * pc[1] * inv_z,
                    0,
                    -fy * inv_z,
                    fy * pc[1] * inv_z2,
                    fy + fy * pc[1] * pc[1] * inv_z2,
                    -fy * pc[0] * pc[1] * inv_z2,
                    -fy * pc[0] * inv_z;
	    // END YOUR CODE HERE

            H += J.transpose() * J;
            b += -J.transpose() * e;
        }

	// solve dx 
        Vector6d dx;

        // START YOUR CODE HERE 
        dx = H.ldlt().solve(b);
        // END YOUR CODE HERE

        if (isnan(dx[0])) {
            cout << "result is nan!" << endl;
            break;
        }

        if (iter > 0 && cost >= lastCost) {
            // cost increase, update is not good
            cout << "cost: " << cost << ", last cost: " << lastCost << endl;
            break;
        }

        // update your estimation
        // START YOUR CODE HERE 
        T_esti = Sophus::SE3::exp(dx) * T_esti;
        // END YOUR CODE HERE
        
        lastCost = cost;

        cout << "iteration " << iter << " cost=" << cout.precision(12) << cost << endl;
    }

    cout << "estimated pose: \n" << T_esti.matrix() << endl;
    return 0;
}

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)

project(E2RT)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE "Release")

#添加头文件
include_directories( "/usr/include/eigen3")
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})


add_executable(gn_ba GN-BA.cpp)

#链接OpenCV库
target_link_libraries(gn_ba ${Sophus_LIBRARIES})

运行结果:
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第12张图片
1.如何定义重投影误差?

像素位置与空间点的位置关系如下:
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第13张图片
写成矩阵形式为Siui=KTPi

由于相机位姿未知及观测点的噪声,该等式存在一个误差。把误差求和,构建最小二乘问题,然后寻找最好的相机位姿,使它最小化:
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第14张图片
将该问题的误差项,是将3D点的投影与观测位置做差,称之为重投影误差。

2.该误差关于⾃变量的雅可⽐矩阵是什么?
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第15张图片

3.解出更新量之后,如何更新⾄之前的估计上?
左乘或右乘微小扰动exp(dx)
代码中为左乘

4.* 用 ICP 实现轨迹对齐

自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第16张图片
icp.cpp

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
using namespace Eigen;
using namespace cv;

string trajectory_file = "../compare.txt";

void pose_estimation_3d3d(const vector<Point3f> &pts1,const vector<Point3f> &pts2, Eigen::Matrix3d &R_, Eigen::Vector3d &t_);
void DrawTrajectory(vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_e,
        vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_g,
        const string& ID);

int main(int argc, char **argv) {

    vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_e;
    vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_g;
    vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_gt;
    vector<Point3f> pts_e,pts_g;
    ifstream fin(trajectory_file);
    if(!fin){
        cerr<<"can't find file at "<<trajectory_file<<endl;
        return 1;
    }
    while(!fin.eof()){
        double t1,tx1,ty1,tz1,qx1,qy1,qz1,qw1;
        double t2,tx2,ty2,tz2,qx2,qy2,qz2,qw2;
        fin>>t1>>tx1>>ty1>>tz1>>qx1>>qy1>>qz1>>qw1>>t2>>tx2>>ty2>>tz2>>qx2>>qy2>>qz2>>qw2;
        pts_e.push_back(Point3f(tx1,ty1,tz1));
        pts_g.push_back(Point3f(tx2,ty2,tz2));
        poses_e.push_back(Sophus::SE3(Quaterniond(qw1,qx1,qy1,qz1),Vector3d(tx1,ty1,tz1)));
        poses_g.push_back(Sophus::SE3(Quaterniond(qw2,qx2,qy2,qz2),Vector3d(tx2,ty2,tz2)));
    }

    Matrix3d R;
    Vector3d t;
    pose_estimation_3d3d(pts_e,pts_g,R,t);
    Sophus::SE3 T_eg(R,t);
    for(auto SE_g:poses_g)    {
        Sophus::SE3 T_e=T_eg*SE_g;
        poses_gt.push_back(T_e);
    }
    DrawTrajectory(poses_e,poses_g," Before Align");
    DrawTrajectory(poses_e,poses_gt," After Align");
    return 0;
}

void pose_estimation_3d3d(const vector<Point3f> &pts1,
                          const vector<Point3f> &pts2,
                          Eigen::Matrix3d &R_, Eigen::Vector3d &t_) {
    Point3f p1, p2;     // center of mass
    int N = pts1.size();
    for (int i = 0; i < N; i++) {
        p1 += pts1[i];
        p2 += pts2[i];
    }
    p1 = Point3f(Vec3f(p1) / N);
    p2 = Point3f(Vec3f(p2) / N);
    vector<Point3f> q1(N), q2(N); // remove the center
    for (int i = 0; i < N; i++) {
        q1[i] = pts1[i] - p1;
        q2[i] = pts2[i] - p2;
    }

    // compute q1*q2^T
    Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
    for (int i = 0; i < N; i++) {
        W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose();
    }
    cout << "W=" << W << endl;

    // SVD on W
    Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
    Eigen::Matrix3d U = svd.matrixU();
    Eigen::Matrix3d V = svd.matrixV();

    cout << "U=" << U << endl;
    cout << "V=" << V << endl;

    R_ = U * (V.transpose());
    if (R_.determinant() < 0) {
        R_ = -R_;
    }
    t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z);
}

void DrawTrajectory(vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_e,
        vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> poses_g,
        const string& ID) {
    if (poses_e.empty() || poses_g.empty()) {
        cerr << "Trajectory is empty!" << endl;
        return;
    }

    string windowtitle = "Trajectory Viewer" + ID;
    // create pangolin window and plot the trajectory
    pangolin::CreateWindowAndBind(windowtitle, 1024, 768);
    glEnable(GL_DEPTH_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

    pangolin::OpenGlRenderState s_cam(
            pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
            pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
    );

    pangolin::View &d_cam = pangolin::CreateDisplay()
            .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
            .SetHandler(new pangolin::Handler3D(s_cam));


    while (pangolin::ShouldQuit() == false) {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        d_cam.Activate(s_cam);
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

        glLineWidth(2);
        for (size_t i = 0; i < poses_e.size() - 1; i++) {
            glColor3f(1.0f, 0.0f, 0.0f);
            glBegin(GL_LINES);
            auto p1 = poses_e[i], p2 = poses_e[i + 1];
            glVertex3d(p1.translation()[0], p1.translation()[1], p1.translation()[2]);
            glVertex3d(p2.translation()[0], p2.translation()[1], p2.translation()[2]);
            glEnd();
        }
        for (size_t i = 0; i < poses_g.size() - 1; i++) {
            glColor3f(0.0f, 0.0f, 1.0f);
            glBegin(GL_LINES);
            auto p1 = poses_g[i], p2 = poses_g[i + 1];
            glVertex3d(p1.translation()[0], p1.translation()[1], p1.translation()[2]);
            glVertex3d(p2.translation()[0], p2.translation()[1], p2.translation()[2]);
            glEnd();
        }
        pangolin::FinishFrame();
        usleep(5000);   // sleep 5 ms
    }
}

compare.txt:

1305031526.671473 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 1.000000000 1305031526.672100 1.5015 0.9306 1.4503 0.8703 0.1493 -0.1216 -0.4533
1305031526.707547 0.002883195 -0.004662100 -0.002254304 0.011409802 0.010697415 0.002189494 0.999875307 1305031526.712200 1.5062 0.9251 1.4551 0.8637 0.1395 -0.1130 -0.4710
1305031526.771481 0.013978966 -0.013082317 -0.010869596 0.043280017 0.032526672 0.003260542 0.998528004 1305031526.772200 1.5119 0.9142 1.4651 -0.8502 -0.1262 0.0954 0.5021
1305031526.807455 -0.001601209 -0.011404546 -0.026841529 0.073491804 0.052071322 0.000915701 0.995935082 1305031526.812100 1.5152 0.9063 1.4724 -0.8341 -0.1188 0.0871 0.5316
1305031526.871446 -0.004428456 -0.001333938 -0.042973492 0.115341254 0.070847765 -0.006601509 0.990774155 1305031526.872200 1.5177 0.8921 1.4824 -0.8172 -0.1124 0.0738 0.5605
1305031526.907484 -0.006487503 -0.003464771 -0.058195263 0.135408968 0.081248961 -0.010381512 0.987398207 1305031526.912200 1.5189 0.8828 1.4886 -0.8039 -0.1062 0.0656 0.5816
1305031526.939618 -0.014331216 -0.013660092 -0.078787915 0.147756621 0.091927201 -0.015138508 0.984625876 1305031526.942100 1.5196 0.8752 1.4926 -0.7958 -0.1012 0.0594 0.5941
1305031526.971510 -0.018625503 -0.015494643 -0.089080200 0.165385425 0.100416750 -0.017430481 0.980948687 1305031526.972200 1.5197 0.8664 1.4958 -0.7881 -0.0951 0.0537 0.6058
1305031527.007595 -0.020048823 -0.005540572 -0.097900160 0.181910872 0.106515355 -0.017926607 0.977364600 1305031527.012100 1.5209 0.8569 1.4996 -0.7795 -0.0899 0.0483 0.6180
1305031527.039512 -0.023435375 -0.009148147 -0.106970325 0.195644155 0.113224901 -0.019022474 0.973931015 1305031527.042100 1.5218 0.8500 1.5023 -0.7711 -0.0861 0.0444 0.6292
1305031527.071487 -0.026807848 0.004425369 -0.112307228 0.213958293 0.120352432 -0.020585811 0.969181776 1305031527.072300 1.5234 0.8450 1.5043 -0.7608 -0.0831 0.0422 0.6422
1305031527.107498 -0.031070728 0.004864503 -0.118102826 0.221194029 0.125381440 -0.019031256 0.966949105 1305031527.112200 1.5243 0.8380 1.5057 -0.7542 -0.0789 0.0399 0.6506
1305031527.139473 -0.030610107 0.008234076 -0.122761726 0.232777029 0.129590198 -0.020409001 0.963641405 1305031527.142100 1.5258 0.8327 1.5068 -0.7480 -0.0759 0.0366 0.6583
1305031527.171540 -0.032993812 0.018031888 -0.131125793 0.240357533 0.133578792 -0.019260569 0.961256444 1305031527.172200 1.5266 0.8284 1.5067 -0.7443 -0.0716 0.0348 0.6630
1305031527.207588 -0.036744710 0.020500474 -0.137645885 0.239894286 0.135950848 -0.017296137 0.961076975 1305031527.212200 1.5271 0.8251 1.5055 -0.7444 -0.0708 0.0335 0.6631
1305031527.271501 -0.043445326 0.041889958 -0.136677355 0.232142463 0.137271211 -0.013112986 0.962857485 1305031527.272100 1.5270 0.8228 1.5007 -0.7554 -0.0680 0.0323 0.6509
1305031527.307472 -0.046960510 0.043947175 -0.127684563 0.222602263 0.136040613 -0.011219901 0.965305805 1305031527.312200 1.5265 0.8244 1.4961 -0.7622 -0.0684 0.0363 0.6427
1305031527.339636 -0.045433633 0.050494798 -0.122109100 0.214023039 0.131844014 -0.006879775 0.967865646 1305031527.322100 1.5263 0.8245 1.4947 -0.7647 -0.0680 0.0377 0.6397
1305031527.539741 -0.040670216 0.068688609 -0.094280347 0.155639857 0.128989607 0.007390451 0.979327977 1305031527.532200 1.5213 0.8354 1.4665 -0.7993 -0.0665 0.0447 0.5955
1305031527.671547 -0.059779059 0.086170383 -0.080027580 0.096256085 0.124875024 0.008046621 0.987459481 1305031527.672100 1.5107 0.8404 1.4443 -0.8388 -0.0797 0.0411 0.5370
1305031527.707520 -0.062977917 0.080318302 -0.075421400 0.081575632 0.118124433 0.010604718 0.989585578 1305031527.712200 1.5059 0.8406 1.4390 -0.8461 -0.0839 0.0480 0.5241
1305031527.771461 -0.063968100 0.079457901 -0.070676021 0.062909685 0.104486309 0.013305012 0.992445469 1305031527.772100 1.4984 0.8395 1.4327 -0.8526 -0.0880 0.0560 0.5121
1305031527.807581 -0.067149058 0.071368024 -0.072235338 0.050288275 0.096843056 0.014775201 0.993918598 1305031527.812200 1.4922 0.8378 1.4290 -0.8564 -0.0930 0.0630 0.5039
1305031527.839601 -0.084145665 0.083385780 -0.065109350 0.049927417 0.091642611 0.016088929 0.994409442 1305031527.842200 1.4867 0.8363 1.4265 -0.8574 -0.0980 0.0705 0.5003
1305031527.871464 -0.094857678 0.090055093 -0.066003457 0.044405133 0.080871582 0.012684624 0.995654106 1305031527.872100 1.4804 0.8341 1.4237 0.8603 0.1070 -0.0783 -0.4922
1305031527.907477 -0.099260926 0.085766435 -0.058261685 0.034565847 0.067202255 0.009141340 0.997098565 1305031527.912100 1.4708 0.8306 1.4204 0.8617 0.1210 -0.0879 -0.4849
1305031527.939566 -0.114897557 0.077028573 -0.058029801 0.028592139 0.054828048 0.000756203 0.998086035 1305031527.942100 1.4628 0.8271 1.4192 0.8586 0.1365 -0.0964 -0.4847
1305031527.971502 -0.125279635 0.082915515 -0.061315395 0.033042073 0.038314771 -0.013166402 0.998632491 1305031527.972200 1.4545 0.8231 1.4180 0.8531 0.1537 -0.1048 -0.4875
1305031528.039560 -0.149975643 0.084671959 -0.052950244 0.036809143 0.004435565 -0.046019781 0.998252273 1305031528.042200 1.4350 0.8113 1.4166 0.8395 0.1968 -0.1235 -0.4911
1305031528.071546 -0.160694852 0.087861642 -0.055381063 0.043458812 -0.012107812 -0.061667852 0.997076631 1305031528.072100 1.4269 0.8052 1.4168 0.8321 0.2141 -0.1310 -0.4947
1305031528.107513 -0.176289976 0.090757042 -0.055422220 0.049189046 -0.027869513 -0.077940412 0.995353699 1305031528.112200 1.4157 0.7957 1.4172 0.8213 0.2395 -0.1415 -0.4982
1305031528.139513 -0.182451800 0.096339859 -0.055684097 0.055754602 -0.047568955 -0.096469797 0.992633939 1305031528.142100 1.4076 0.7880 1.4177 -0.8129 -0.2579 0.1482 0.5008
1305031528.171523 -0.189394832 0.097757049 -0.056705259 0.059309058 -0.062220436 -0.113738760 0.989785075 1305031528.172100 1.3999 0.7798 1.4182 -0.8057 -0.2750 0.1516 0.5023
1305031528.207527 -0.202431262 0.095546886 -0.061502121 0.064778626 -0.071393289 -0.133537352 0.986344039 1305031528.212100 1.3902 0.7684 1.4191 -0.7934 -0.2930 0.1537 0.5109
1305031528.239493 -0.211042851 0.098279119 -0.066208452 0.074096076 -0.080469146 -0.148469865 0.982848525 1305031528.242200 1.3834 0.7599 1.4203 -0.7816 -0.3053 0.1570 0.5208
1305031528.275450 -0.223710716 0.104189500 -0.073275700 0.081444807 -0.093165532 -0.159726724 0.979374468 1305031528.272200 1.3757 0.7500 1.4218 -0.7755 -0.3204 0.1620 0.5193
1305031528.307665 -0.244773716 0.107162125 -0.078257680 0.089617550 -0.112386964 -0.174391136 0.974128127 1305031528.312100 1.3670 0.7361 1.4255 -0.7607 -0.3420 0.1774 0.5223
1305031528.339593 -0.267502815 0.119377658 -0.079869874 0.100359902 -0.131352678 -0.185550600 0.968630672 1305031528.342100 1.3592 0.7261 1.4284 -0.7470 -0.3576 0.1940 0.5259
1305031528.375435 -0.277227014 0.122483246 -0.086401798 0.105153799 -0.156168520 -0.190717027 0.963421524 1305031528.372100 1.3526 0.7159 1.4316 -0.7373 -0.3709 0.2099 0.5242
1305031528.407459 -0.286472470 0.125400484 -0.096434973 0.109714307 -0.185297355 -0.197440162 0.956370771 1305031528.412200 1.3435 0.7011 1.4363 -0.7218 -0.3905 0.2364 0.5202
1305031528.439469 -0.294514090 0.129935056 -0.100482926 0.113646500 -0.217375934 -0.202731520 0.948014855 1305031528.442100 1.3372 0.6902 1.4400 -0.7103 -0.4054 0.2555 0.5156
1305031528.475342 -0.309931368 0.129882887 -0.129739463 0.111446232 -0.240962654 -0.210141197 0.940934300 1305031528.472100 1.3311 0.6784 1.4431 -0.7014 -0.4167 0.2744 0.5090
1305031528.539626 -0.329695433 0.143418118 -0.155989200 0.111015044 -0.298002064 -0.219036371 0.922438860 1305031528.542200 1.3180 0.6526 1.4496 0.6736 0.4500 -0.3218 -0.4902
1305031528.575449 -0.329237044 0.149565578 -0.154559985 0.106090672 -0.328091890 -0.223088816 0.911773980 1305031528.572300 1.3133 0.6410 1.4507 0.6649 0.4635 -0.3380 -0.4782
1305031528.607841 -0.340293765 0.151535481 -0.160942093 0.099514537 -0.350554526 -0.228903219 0.902669191 1305031528.612200 1.3094 0.6251 1.4510 0.6549 0.4788 -0.3560 -0.4638
1305031528.639487 -0.340425193 0.165493459 -0.169357076 0.096142113 -0.372110546 -0.231576025 0.893679440 1305031528.642100 1.3070 0.6131 1.4497 0.6474 0.4893 -0.3666 -0.4550
1305031528.707447 -0.339044899 0.179300487 -0.177713454 0.078025557 -0.396103621 -0.245452717 0.881343842 1305031528.712200 1.3036 0.5843 1.4413 0.6416 0.5122 -0.3716 -0.4335
1305031528.739609 -0.342159748 0.189583004 -0.177449271 0.070908576 -0.403506339 -0.253377467 0.876330137 1305031528.742100 1.3022 0.5717 1.4362 0.6380 0.5205 -0.3731 -0.4277
1305031528.775443 -0.341898620 0.206203520 -0.174872875 0.064870313 -0.407845527 -0.261114776 0.872509539 1305031528.772100 1.3019 0.5591 1.4304 0.6397 0.5275 -0.3680 -0.4209
1305031528.807559 -0.348404497 0.222904056 -0.195781291 0.056483749 -0.403348863 -0.271214008 0.872102201 1305031528.812100 1.3009 0.5418 1.4213 0.6417 0.5382 -0.3614 -0.4098
1305031528.839572 -0.353144258 0.236203671 -0.200213343 0.045424741 -0.405389339 -0.278263241 0.869577825 1305031528.842200 1.2998 0.5287 1.4140 0.6412 0.5445 -0.3598 -0.4036
1305031528.875433 -0.357103825 0.256649941 -0.206021339 0.036655750 -0.406093627 -0.286254942 0.867065430 1305031528.872100 1.2985 0.5151 1.4065 0.6435 0.5524 -0.3545 -0.3939
1305031528.907519 -0.363840312 0.273261279 -0.213352874 0.023924233 -0.403293431 -0.293037355 0.866551280 1305031528.912100 1.2962 0.4966 1.3960 0.6491 0.5605 -0.3457 -0.3808
1305031528.939602 -0.373810410 0.280675173 -0.220558763 0.005930781 -0.399948001 -0.299453437 0.866218269 1305031528.942100 1.2942 0.4819 1.3883 0.6557 0.5642 -0.3396 -0.3692
1305031528.975465 -0.383288622 0.293885916 -0.225069121 -0.007588292 -0.398547530 -0.297109455 0.867656767 1305031528.972100 1.2922 0.4665 1.3810 0.6627 0.5621 -0.3385 -0.3610
1305031529.007487 -0.387591243 0.312122375 -0.228814498 -0.022781339 -0.395879656 -0.293224841 0.869930744 1305031529.012100 1.2880 0.4447 1.3704 0.6751 0.5606 -0.3311 -0.3470
1305031529.039494 -0.396930993 0.326887786 -0.233368337 -0.039953087 -0.387588739 -0.290734917 0.873871803 1305031529.042100 1.2848 0.4279 1.3625 0.6879 0.5564 -0.3221 -0.3367
1305031529.075422 -0.409061730 0.334867179 -0.235107094 -0.057665374 -0.375858516 -0.282847494 0.880569339 1305031529.072100 1.2813 0.4105 1.3549 0.7035 0.5454 -0.3135 -0.3306
1305031529.107523 -0.420381188 0.348994136 -0.244129315 -0.070332937 -0.359931797 -0.270585924 0.890104294 1305031529.112100 1.2759 0.3862 1.3451 0.7244 0.5267 -0.3032 -0.3256
1305031529.139597 -0.432475984 0.367254645 -0.253846556 -0.084366389 -0.344622523 -0.252671927 0.900152504 1305031529.142200 1.2710 0.3666 1.3378 0.7418 0.5092 -0.2977 -0.3190
1305031529.175411 -0.442705750 0.384032130 -0.264635384 -0.099091217 -0.330286026 -0.234458074 0.908912241 1305031529.172100 1.2660 0.3461 1.3310 0.7603 0.4912 -0.2910 -0.3100
1305031529.207466 -0.461968184 0.417857319 -0.283306688 -0.107409544 -0.308710963 -0.220306739 0.919035196 1305031529.212100 1.2578 0.3180 1.3227 0.7825 0.4731 -0.2775 -0.2947
1305031529.239515 -0.474564463 0.434241831 -0.290974945 -0.122858316 -0.295257181 -0.214269757 0.922939599 1305031529.242200 1.2501 0.2972 1.3166 0.7943 0.4646 -0.2658 -0.2874
1305031529.275389 -0.488497406 0.454518944 -0.299479723 -0.134992152 -0.277170092 -0.211710542 0.927433312 1305031529.272100 1.2422 0.2763 1.3115 0.8063 0.4580 -0.2489 -0.2797
1305031529.307413 -0.505657196 0.462695599 -0.306875080 -0.152041495 -0.259664267 -0.206709743 0.930982769 1305031529.312200 1.2305 0.2483 1.3063 0.8194 0.4484 -0.2302 -0.2732
1305031529.339486 -0.530183196 0.486928225 -0.326155573 -0.160189480 -0.237766638 -0.205552071 0.935710788 1305031529.342100 1.2210 0.2270 1.3029 0.8282 0.4457 -0.2162 -0.2622
1305031529.375399 -0.554967403 0.482978404 -0.331514835 -0.181723729 -0.229372948 -0.205984905 0.933774471 1305031529.372100 1.2104 0.2063 1.3008 0.8301 0.4456 -0.2115 -0.2602
1305031529.407513 -0.573170364 0.494490802 -0.336653709 -0.182107240 -0.230446473 -0.207627431 0.933071375 1305031529.412100 1.1956 0.1791 1.2997 0.8299 0.4472 -0.2081 -0.2607
1305031529.439502 -0.592521727 0.509317398 -0.348569959 -0.176561520 -0.225443274 -0.212392747 0.934286177 1305031529.442100 1.1843 0.1600 1.3000 0.8304 0.4464 -0.2028 -0.2645
1305031529.475403 -0.613592625 0.520123661 -0.360875040 -0.172136515 -0.218513519 -0.214253858 0.936331213 1305031529.472100 1.1729 0.1418 1.3008 0.8303 0.4460 -0.1983 -0.2690
1305031529.507485 -0.633599639 0.528568029 -0.369254827 -0.166303858 -0.213266820 -0.219033107 0.937488556 1305031529.512100 1.1577 0.1193 1.3029 0.8290 0.4453 -0.1917 -0.2788
1305031529.539489 -0.651074648 0.528935075 -0.378143847 -0.160415858 -0.206384078 -0.221350908 0.939508438 1305031529.542200 1.1462 0.1041 1.3046 0.8290 0.4417 -0.1865 -0.2879
1305031529.607479 -0.686017632 0.545031309 -0.394158632 -0.154660717 -0.191093341 -0.215704605 0.945005238 1305031529.612300 1.1179 0.0732 1.3064 0.8350 0.4311 -0.1765 -0.2927
1305031529.639746 -0.701905608 0.552717209 -0.398970723 -0.154912621 -0.184921563 -0.209788874 0.947520316 1305031529.642300 1.1057 0.0620 1.3067 0.8404 0.4225 -0.1734 -0.2919
1305031529.675618 -0.719306707 0.559796870 -0.401483953 -0.157197714 -0.176389754 -0.200863779 0.950699389 1305031529.672100 1.0934 0.0521 1.3067 0.8466 0.4127 -0.1705 -0.2897
1305031529.707557 -0.735418081 0.563297987 -0.403395295 -0.162735164 -0.169739127 -0.191895753 0.952828407 1305031529.712100 1.0772 0.0401 1.3062 0.8540 0.4020 -0.1668 -0.2851
1305031529.739568 -0.746963501 0.566777885 -0.403324068 -0.165786088 -0.164117917 -0.185986936 0.954457521 1305031529.742100 1.0645 0.0324 1.3057 0.8593 0.3933 -0.1610 -0.2845
1305031529.775501 -0.761871457 0.562885761 -0.403146863 -0.173444703 -0.152099952 -0.180582851 0.956123650 1305031529.772100 1.0519 0.0257 1.3054 0.8653 0.3833 -0.1532 -0.2845
1305031529.807516 -0.782125950 0.550134659 -0.398882180 -0.178626403 -0.136654928 -0.177510321 0.958075225 1305031529.812200 1.0347 0.0182 1.3067 0.8683 0.3721 -0.1418 -0.2957
1305031529.839505 -0.801752090 0.562361419 -0.403514504 -0.164821103 -0.120010868 -0.171232879 0.963903904 1305031529.842200 1.0205 0.0123 1.3077 0.8720 0.3619 -0.1364 -0.3002
1305031529.875495 -0.825005233 0.565140069 -0.403103828 -0.163723126 -0.107326634 -0.161056474 0.967334747 1305031529.872100 1.0056 0.0061 1.3092 0.8768 0.3496 -0.1342 -0.3015
1305031529.939498 -0.862981617 0.568239570 -0.402119935 -0.153819934 -0.099035807 -0.135157794 0.973788321 1305031529.942300 0.9664 -0.0101 1.3143 0.8831 0.3236 -0.1383 -0.3102
1305031529.975501 -0.880968273 0.572280824 -0.404322088 -0.150892213 -0.094667107 -0.124493204 0.976099968 1305031529.972100 0.9487 -0.0181 1.3172 0.8879 0.3138 -0.1360 -0.3078
1305031530.007409 -0.905366302 0.569447100 -0.406524211 -0.154951453 -0.086226285 -0.112701796 0.977677524 1305031530.012200 0.9251 -0.0287 1.3230 0.8943 0.2970 -0.1364 -0.3057
1305031530.039454 -0.928224921 0.566439390 -0.410196871 -0.157523975 -0.081151128 -0.098109439 0.979272783 1305031530.042100 0.9078 -0.0374 1.3294 0.8982 0.2858 -0.1387 -0.3039
1305031530.075443 -0.950253010 0.559827328 -0.416947931 -0.162434965 -0.077827856 -0.086941622 0.979795277 1305031530.072100 0.8912 -0.0468 1.3372 0.9025 0.2763 -0.1397 -0.2994
1305031530.107445 -0.969959199 0.551806927 -0.419147462 -0.166437954 -0.076426215 -0.074270479 0.980276167 1305031530.112100 0.8702 -0.0598 1.3504 0.9063 0.2617 -0.1441 -0.2991
1305031530.139497 -0.990334094 0.546676219 -0.427851111 -0.161496118 -0.075611651 -0.063429944 0.981925905 1305031530.142100 0.8549 -0.0694 1.3619 0.9068 0.2541 -0.1470 -0.3026
1305031530.175410 -1.011743307 0.532514870 -0.437951684 -0.163490430 -0.073183246 -0.057896268 0.982121706 1305031530.172100 0.8401 -0.0790 1.3745 0.9079 0.2497 -0.1467 -0.3031
1305031530.207486 -1.026106596 0.520563304 -0.442257732 -0.161179200 -0.074755140 -0.053572387 0.982630610 1305031530.212100 0.8207 -0.0918 1.3931 0.9064 0.2442 -0.1474 -0.3116
1305031530.239446 -1.046416879 0.508008480 -0.452970088 -0.153883174 -0.071162157 -0.053860974 0.984050274 1305031530.242100 0.8068 -0.1013 1.4078 0.9047 0.2421 -0.1449 -0.3193
1305031530.275407 -1.064027667 0.502663970 -0.465098500 -0.145707563 -0.066783614 -0.056310035 0.985463560 1305031530.272100 0.7934 -0.1110 1.4224 0.9035 0.2412 -0.1406 -0.3252
1305031530.307544 -1.084838510 0.495963782 -0.480404109 -0.138100356 -0.059795361 -0.058558144 0.986875772 1305031530.312100 0.7759 -0.1236 1.4419 0.9029 0.2375 -0.1349 -0.3319
1305031530.339724 -1.100072503 0.492883712 -0.494072199 -0.130769208 -0.053706903 -0.059014130 0.988196492 1305031530.342200 0.7628 -0.1330 1.4560 0.9028 0.2349 -0.1290 -0.3364
1305031530.375386 -1.120413184 0.486829787 -0.506913781 -0.130313993 -0.043995000 -0.061205465 0.988603354 1305031530.372100 0.7506 -0.1430 1.4696 0.9048 0.2337 -0.1209 -0.3349
1305031530.407465 -1.137735009 0.470962703 -0.514536798 -0.131977677 -0.037198730 -0.060183074 0.988724470 1305031530.412100 0.7341 -0.1559 1.4881 0.9045 0.2300 -0.1148 -0.3402
1305031530.439553 -1.155470848 0.461909473 -0.526750922 -0.126318991 -0.030234955 -0.060742665 0.989666462 1305031530.442100 0.7216 -0.1654 1.5023 0.9040 0.2261 -0.1088 -0.3460
1305031530.475439 -1.170725107 0.454504520 -0.538456917 -0.121499091 -0.024126580 -0.059113618 0.990535975 1305031530.472100 0.7099 -0.1754 1.5169 0.9044 0.2220 -0.1045 -0.3491
1305031530.507461 -1.180110931 0.439052403 -0.553038239 -0.118578292 -0.020405162 -0.056899898 0.991103053 1305031530.512100 0.6956 -0.1882 1.5374 0.9034 0.2144 -0.0975 -0.3584
1305031530.539532 -1.191027403 0.419814497 -0.562419176 -0.113885224 -0.011026874 -0.057769980 0.991751552 1305031530.542100 0.6854 -0.1978 1.5540 0.9010 0.2085 -0.0887 -0.3699
1305031530.575433 -1.200631261 0.397278607 -0.576177061 -0.101490840 0.001630238 -0.058040317 0.993140638 1305031530.572100 0.6760 -0.2074 1.5716 0.8966 0.2015 -0.0783 -0.3864
1305031530.607559 -1.212776303 0.389287174 -0.602888942 -0.081612900 0.019034607 -0.057921402 0.994797528 1305031530.612100 0.6643 -0.2208 1.5949 0.8921 0.1876 -0.0617 -0.4063
1305031530.639507 -1.220603108 0.378338605 -0.620145977 -0.066848807 0.038806383 -0.056910057 0.995382607 1305031530.642100 0.6556 -0.2316 1.6115 0.8889 0.1759 -0.0458 -0.4204
1305031530.675401 -1.233175039 0.370456308 -0.634583414 -0.049930591 0.064168848 -0.054673307 0.995188534 1305031530.672200 0.6472 -0.2436 1.6277 0.8852 0.1621 -0.0275 -0.4352
1305031530.739522 -1.261493683 0.360025346 -0.682886183 -0.012161122 0.119721055 -0.044118252 0.991752267 1305031530.742100 0.6260 -0.2744 1.6604 0.8736 0.1215 0.0135 -0.4710
1305031530.775437 -1.286842823 0.352220833 -0.699633360 -0.001169587 0.149443701 -0.036229160 0.988105595 1305031530.772100 0.6156 -0.2883 1.6720 0.8700 0.1022 0.0301 -0.4814
1305031530.807467 -1.315137267 0.367161959 -0.714146852 0.014115841 0.176487401 -0.025651047 0.983867347 1305031530.812100 0.6001 -0.3069 1.6845 0.8661 0.0784 0.0482 -0.4914
1305031530.839463 -1.334642172 0.385298789 -0.735829711 0.022136053 0.194981277 -0.011893014 0.980485022 1305031530.842100 0.5870 -0.3201 1.6912 0.8668 0.0628 0.0582 -0.4912
1305031530.875401 -1.369665146 0.392395049 -0.718994856 0.019827759 0.211101934 -0.004093302 0.977254331 1305031530.872100 0.5719 -0.3328 1.6958 0.8698 0.0507 0.0631 -0.4868
1305031530.939462 -1.440359116 0.392066211 -0.715514898 0.027499944 0.218641758 0.006692985 0.975394666 1305031530.942100 0.5290 -0.3562 1.6990 0.8668 0.0445 0.0556 -0.4936
1305031530.975286 -1.467925072 0.411824465 -0.707297087 0.030095484 0.210740373 0.005826227 0.977061331 1305031530.974200 0.5080 -0.3634 1.6957 0.8682 0.0497 0.0473 -0.4914
1305031531.039689 -1.532592058 0.420356303 -0.690787911 0.015797708 0.180459052 0.009155454 0.983412981 1305031531.042100 0.4557 -0.3746 1.6807 0.8766 0.0616 0.0159 -0.4771
1305031531.075325 -1.562474847 0.429022819 -0.690205455 0.005178453 0.163495257 0.011896124 0.986458778 1305031531.072100 0.4319 -0.3776 1.6714 0.8823 0.0681 0.0025 -0.4658
1305031531.139581 -1.601380587 0.422103971 -0.659301877 -0.019878304 0.124184996 0.021121128 0.991835117 1305031531.142100 0.3745 -0.3826 1.6474 0.8923 0.0813 -0.0349 -0.4426
1305031531.175355 -1.639283180 0.431639075 -0.641484380 -0.024015591 0.109652370 0.022073412 0.993434608 1305031531.172100 0.3490 -0.3829 1.6359 0.8932 0.0860 -0.0489 -0.4386
1305031531.239619 -1.697065711 0.448480546 -0.603893578 -0.037680656 0.077034988 0.029067826 0.995891988 1305031531.242100 0.2877 -0.3830 1.6082 0.8992 0.0983 -0.0832 -0.4182
1305031531.275515 -1.703558922 0.446289897 -0.581166387 -0.042331036 0.054736137 0.030868566 0.997125447 1305031531.272100 0.2621 -0.3813 1.5969 0.8975 0.1012 -0.0962 -0.4183
1305031531.339595 -1.733692527 0.463021219 -0.532173812 -0.038276989 0.032155998 0.032915492 0.998207092 1305031531.342100 0.2030 -0.3764 1.5716 0.8963 0.1053 -0.1118 -0.4160
1305031531.375434 -1.745871305 0.456259906 -0.526792645 -0.041909553 0.028999120 0.034955364 0.998088539 1305031531.372200 0.1790 -0.3732 1.5615 0.8962 0.1038 -0.1101 -0.4170
1305031531.439644 -1.779512048 0.465197712 -0.493550062 -0.036073327 0.041923068 0.037195776 0.997776330 1305031531.442100 0.1265 -0.3619 1.5401 0.8965 0.0914 -0.0964 -0.4227
1305031531.475324 -1.798225164 0.454130113 -0.473303884 -0.036804512 0.051448308 0.042760260 0.997080803 1305031531.472100 0.1047 -0.3559 1.5326 0.8958 0.0842 -0.0917 -0.4266
1305031531.507602 -1.822675109 0.462594450 -0.457025111 -0.029646453 0.061003584 0.044361576 0.996710420 1305031531.512100 0.0756 -0.3470 1.5235 0.8957 0.0774 -0.0856 -0.4294
1305031531.539487 -1.842242837 0.456204623 -0.437320828 -0.031237461 0.066190429 0.049604204 0.996083558 1305031531.542100 0.0542 -0.3398 1.5177 0.8963 0.0722 -0.0840 -0.4294
1305031531.575392 -1.859240055 0.452193916 -0.418387532 -0.029357912 0.069689915 0.056401949 0.995540142 1305031531.572100 0.0328 -0.3328 1.5125 0.8961 0.0639 -0.0842 -0.4312
1305031531.607419 -1.883657813 0.457863688 -0.402540445 -0.025465036 0.077164032 0.058375940 0.994982183 1305031531.612100 0.0044 -0.3251 1.5060 0.8970 0.0566 -0.0794 -0.4312
1305031531.639521 -1.899605870 0.452908516 -0.387782335 -0.027194945 0.083178692 0.061760947 0.994247079 1305031531.642100 -0.0167 -0.3202 1.5017 0.8977 0.0508 -0.0749 -0.4312
1305031531.675444 -1.919689298 0.445739567 -0.371033162 -0.025581570 0.090562560 0.067330092 0.993282795 1305031531.672100 -0.0377 -0.3154 1.4979 0.8966 0.0453 -0.0712 -0.4348
1305031531.707498 -1.942379117 0.446997017 -0.358369708 -0.022856202 0.095322154 0.067656010 0.992881656 1305031531.712100 -0.0664 -0.3098 1.4926 0.8962 0.0430 -0.0674 -0.4364
1305031531.739657 -1.959185481 0.443148822 -0.342861593 -0.023469506 0.098902434 0.065572299 0.992656887 1305031531.742100 -0.0882 -0.3062 1.4889 0.8957 0.0423 -0.0624 -0.4382
1305031531.775442 -1.979072928 0.441148520 -0.330076396 -0.019746941 0.104963057 0.062876657 0.992289960 1305031531.772100 -0.1091 -0.3032 1.4854 0.8948 0.0409 -0.0569 -0.4410
1305031531.839545 -2.031389952 0.447761118 -0.309799880 -0.013570230 0.114844196 0.061703201 0.991372466 1305031531.842100 -0.1569 -0.2970 1.4755 0.8942 0.0384 -0.0516 -0.4430
1305031531.875426 -2.051207066 0.454951376 -0.297199756 -0.021668158 0.116940536 0.061709389 0.990983009 1305031531.872100 -0.1768 -0.2953 1.4701 0.8993 0.0370 -0.0487 -0.4330
1305031531.907427 -2.065320730 0.452592254 -0.285301477 -0.031805091 0.119541608 0.064228982 0.990238786 1305031531.912100 -0.2021 -0.2925 1.4623 0.9031 0.0329 -0.0445 -0.4258
1305031531.939564 -2.087300062 0.462161213 -0.274148226 -0.037705932 0.127705678 0.065471835 0.988930225 1305031531.942100 -0.2198 -0.2907 1.4559 0.9078 0.0281 -0.0386 -0.4166
1305031531.975488 -2.093064547 0.461891323 -0.259108394 -0.048334002 0.131502032 0.071743190 0.987534285 1305031531.972000 -0.2371 -0.2894 1.4489 0.9117 0.0222 -0.0332 -0.4090
1305031532.039675 -2.138504982 0.468977809 -0.237405121 -0.068548255 0.151021704 0.087101094 0.982296765 1305031532.042100 -0.2758 -0.2854 1.4292 0.9220 0.0000 -0.0229 -0.3865
1305031532.075525 -2.154035091 0.475413442 -0.224113107 -0.081441589 0.158602655 0.097342521 0.979151130 1305031532.072100 -0.2923 -0.2829 1.4194 0.9268 -0.0119 -0.0189 -0.3748
1305031532.107398 -2.170846462 0.476327538 -0.211347252 -0.096188217 0.167010888 0.114576295 0.974539578 1305031532.112100 -0.3142 -0.2804 1.4061 0.9340 -0.0326 -0.0163 -0.3555
1305031532.139520 -2.183909655 0.482602686 -0.195677429 -0.106095791 0.173370019 0.133438647 0.969990015 1305031532.142100 -0.3306 -0.2779 1.3964 0.9371 -0.0498 -0.0170 -0.3452
1305031532.175563 -2.204168081 0.487305760 -0.182892680 -0.115662292 0.180792108 0.152461916 0.964723706 1305031532.172100 -0.3470 -0.2759 1.3859 0.9402 -0.0665 -0.0181 -0.3336
1305031532.207465 -2.218504429 0.490628541 -0.167850137 -0.125417709 0.186160758 0.172982588 0.959005535 1305031532.212100 -0.3700 -0.2733 1.3727 0.9427 -0.0910 -0.0207 -0.3202
1305031532.239966 -2.232538939 0.485460877 -0.154788435 -0.135157928 0.190700769 0.194355324 0.952675998 1305031532.242100 -0.3882 -0.2719 1.3635 0.9441 -0.1075 -0.0227 -0.3108
1305031532.275514 -2.249806881 0.494778156 -0.138956249 -0.140495762 0.196945250 0.208807215 0.947561681 1305031532.272100 -0.4065 -0.2695 1.3546 0.9452 -0.1237 -0.0218 -0.3015
1305031532.307481 -2.270475149 0.491068125 -0.125185370 -0.150628984 0.205311298 0.226947188 0.940028250 1305031532.312100 -0.4318 -0.2643 1.3440 0.9463 -0.1444 -0.0210 -0.2884
1305031532.339777 -2.298396587 0.483481675 -0.119883269 -0.160714403 0.210132763 0.245520025 0.932595849 1305031532.342100 -0.4514 -0.2600 1.3378 0.9480 -0.1576 -0.0267 -0.2752
1305031532.375496 -2.308708191 0.483014703 -0.102232724 -0.170642778 0.204762936 0.261436999 0.927687407 1305031532.372100 -0.4712 -0.2549 1.3327 0.9493 -0.1668 -0.0334 -0.2645
1305031532.407448 -2.321734905 0.485834032 -0.082304329 -0.173469499 0.199078232 0.272692949 0.925156593 1305031532.412100 -0.4976 -0.2460 1.3290 0.9491 -0.1738 -0.0400 -0.2595
1305031532.439533 -2.312674999 0.493773341 -0.052393615 -0.164424136 0.192252085 0.276291192 0.927182317 1305031532.442100 -0.5166 -0.2382 1.3287 0.9462 -0.1736 -0.0405 -0.2699
1305031532.475428 -2.326466560 0.491763413 -0.038195968 -0.146774530 0.193966687 0.269313127 0.931828618 1305031532.472100 -0.5350 -0.2292 1.3290 0.9418 -0.1731 -0.0379 -0.2858
1305031532.507415 -2.337444067 0.476558536 -0.021644324 -0.135551944 0.197096482 0.271520108 0.932231426 1305031532.512100 -0.5582 -0.2167 1.3297 0.9370 -0.1761 -0.0373 -0.2995
1305031532.539458 -2.354415417 0.468815923 -0.009330034 -0.119453430 0.199560761 0.270655215 0.934158504 1305031532.542200 -0.5747 -0.2059 1.3301 0.9321 -0.1779 -0.0378 -0.3132
1305031532.575435 -2.356000185 0.463053286 0.010164797 -0.104051962 0.198285818 0.270546138 0.936301589 1305031532.572100 -0.5905 -0.1945 1.3305 0.9277 -0.1811 -0.0379 -0.3243
1305031532.607434 -2.375977993 0.448595047 0.024759412 -0.101074167 0.207025707 0.272525936 0.934159517 1305031532.612100 -0.6096 -0.1787 1.3297 0.9254 -0.1900 -0.0337 -0.3263
1305031532.639592 -2.378012896 0.452039748 0.046087086 -0.096321635 0.216378912 0.272717237 0.932484686 1305031532.642100 -0.6219 -0.1663 1.3290 0.9230 -0.2000 -0.0244 -0.3279
1305031532.707308 -2.405913591 0.421957314 0.065707028 -0.102902457 0.248862371 0.286105812 0.919577122 1305031532.712100 -0.6458 -0.1376 1.3257 0.9206 -0.2273 -0.0038 -0.3176
1305031532.740052 -2.404225826 0.415780902 0.081942737 -0.112762004 0.256119311 0.296936125 0.912971258 1305031532.742100 -0.6544 -0.1253 1.3239 0.9215 -0.2376 0.0007 -0.3071
1305031532.775761 -2.405336142 0.406422228 0.098615646 -0.117217809 0.264744252 0.308573484 0.906064510 1305031532.772100 -0.6620 -0.1131 1.3221 0.9206 -0.2469 0.0048 -0.3025
1305031532.807429 -2.401256800 0.405207753 0.114581287 -0.113917835 0.271649241 0.311569601 0.903412342 1305031532.812100 -0.6703 -0.0970 1.3205 0.9174 -0.2566 0.0136 -0.3040
1305031532.839717 -2.404197931 0.401611626 0.128565013 -0.111438639 0.285279453 0.313981265 0.898672819 1305031532.842100 -0.6747 -0.0851 1.3192 0.9145 -0.2681 0.0222 -0.3023
1305031532.875476 -2.404158115 0.396329761 0.139863133 -0.109073058 0.300081581 0.320100188 0.891958475 1305031532.872100 -0.6779 -0.0731 1.3178 0.9105 -0.2801 0.0324 -0.3025
1305031532.907577 -2.404700279 0.384561151 0.149034858 -0.109283403 0.312692255 0.331081420 0.883552969 1305031532.912100 -0.6814 -0.0576 1.3156 0.9061 -0.2976 0.0401 -0.2981
1305031532.939523 -2.396136284 0.377146363 0.163070798 -0.105089337 0.320458293 0.347403884 0.874970436 1305031532.942100 -0.6824 -0.0456 1.3140 0.8998 -0.3121 0.0415 -0.3022
1305031532.975424 -2.389782906 0.373017102 0.174210250 -0.096274994 0.327154636 0.359121144 0.868753672 1305031532.972100 -0.6835 -0.0339 1.3128 0.8943 -0.3261 0.0416 -0.3034
1305031533.007402 -2.385313511 0.369636059 0.183168054 -0.087607786 0.334404796 0.370132059 0.862264812 1305031533.012100 -0.6841 -0.0187 1.3113 0.8856 -0.3452 0.0444 -0.3076
1305031533.039505 -2.384852648 0.363770932 0.193482935 -0.078389786 0.344901085 0.378401875 0.855400681 1305031533.042100 -0.6843 -0.0077 1.3105 0.8775 -0.3601 0.0481 -0.3131
1305031533.075500 -2.390422821 0.358458579 0.201107919 -0.075769223 0.356961578 0.385053575 0.847685814 1305031533.072100 -0.6849 0.0024 1.3101 0.8726 -0.3753 0.0521 -0.3082
1305031533.107480 -2.385401726 0.354564846 0.210260272 -0.075533710 0.367279410 0.397776663 0.837361455 1305031533.112100 -0.6867 0.0137 1.3120 0.8662 -0.3930 0.0600 -0.3027
1305031533.139514 -2.372012615 0.350669831 0.212894857 -0.068521887 0.374805063 0.406299293 0.830509961 1305031533.142800 -0.6884 0.0209 1.3165 0.8596 -0.4018 0.0676 -0.3085
1305031533.175459 -2.377696514 0.333864450 0.215952337 -0.065009937 0.388197184 0.408438295 0.823562264 1305031533.172100 -0.6903 0.0276 1.3219 0.8548 -0.4080 0.0756 -0.3116
1305031533.207507 -2.385103226 0.325788766 0.217759430 -0.066561528 0.398282826 0.409474522 0.818089783 1305031533.212100 -0.6935 0.0346 1.3304 0.8520 -0.4174 0.0840 -0.3047
1305031533.239511 -2.376122475 0.316433787 0.215501904 -0.067036957 0.404730767 0.414873511 0.812144697 1305031533.242100 -0.6962 0.0385 1.3397 0.8477 -0.4226 0.0931 -0.3068
1305031533.275405 -2.378651381 0.301562667 0.210795879 -0.062826820 0.414004087 0.415971458 0.807230532 1305031533.272100 -0.6992 0.0412 1.3504 0.8439 -0.4262 0.0991 -0.3103
1305031533.307502 -2.378507137 0.290278614 0.203924775 -0.059505433 0.418073028 0.418126583 0.804266214 1305031533.312100 -0.7042 0.0435 1.3665 0.8388 -0.4319 0.1059 -0.3140
1305031533.339522 -2.383118629 0.276216388 0.197004974 -0.052702114 0.427105308 0.417102575 0.800517917 1305031533.342200 -0.7084 0.0443 1.3802 0.8334 -0.4358 0.1135 -0.3203
1305031533.375654 -2.389847040 0.259841800 0.191461027 -0.043600217 0.436674982 0.417547673 0.795655668 1305031533.372100 -0.7132 0.0454 1.3941 0.8280 -0.4400 0.1189 -0.3267
1305031533.407483 -2.399025917 0.243333876 0.190472424 -0.034539811 0.443461597 0.417135537 0.792557120 1305031533.412100 -0.7208 0.0479 1.4122 0.8232 -0.4426 0.1199 -0.3347
1305031533.439774 -2.405803442 0.218966901 0.184065044 -0.030534860 0.443719029 0.421467364 0.790282428 1305031533.442100 -0.7267 0.0503 1.4251 0.8186 -0.4462 0.1192 -0.3415
1305031533.475654 -2.414663076 0.213283241 0.182140827 -0.017157676 0.446590602 0.421785623 0.788897574 1305031533.472100 -0.7330 0.0521 1.4375 0.8131 -0.4513 0.1187 -0.3480
1305031533.507463 -2.427252293 0.201290309 0.180907130 -0.010102161 0.450482249 0.423938572 0.785646081 1305031533.512000 -0.7418 0.0550 1.4525 0.8066 -0.4594 0.1185 -0.3525
1305031533.539640 -2.430620909 0.187578976 0.176244736 -0.001676425 0.453472286 0.429042488 0.781205893 1305031533.542100 -0.7482 0.0570 1.4631 0.7996 -0.4653 0.1208 -0.3598
1305031533.575643 -2.440914631 0.187283993 0.175111234 0.010996390 0.459485590 0.427886397 0.778245032 1305031533.572100 -0.7547 0.0595 1.4725 0.7938 -0.4711 0.1242 -0.3641
1305031533.607639 -2.445695400 0.186571300 0.166759789 0.017729463 0.465337425 0.430729181 0.773058355 1305031533.612100 -0.7633 0.0624 1.4833 0.7856 -0.4820 0.1337 -0.3643
1305031533.639561 -2.457445145 0.168652773 0.174272835 0.018688479 0.478676170 0.434703529 0.762596071 1305031533.642000 -0.7698 0.0651 1.4902 0.7802 -0.4896 0.1386 -0.3639
1305031533.675446 -2.467365265 0.175865710 0.174820364 0.023927663 0.483153671 0.436838537 0.758394361 1305031533.672100 -0.7764 0.0688 1.4956 0.7762 -0.4982 0.1420 -0.3594
1305031533.707501 -2.468612432 0.172062576 0.169309556 0.020866981 0.488988280 0.442800790 0.751253903 1305031533.712100 -0.7857 0.0749 1.5013 0.7703 -0.5091 0.1544 -0.3515
1305031533.739555 -2.470218182 0.165642560 0.164204478 0.017631054 0.499439180 0.446189016 0.742404878 1305031533.742000 -0.7930 0.0804 1.5052 0.7650 -0.5156 0.1674 -0.3476
1305031533.775530 -2.485262871 0.153400719 0.184181690 0.015735591 0.517516196 0.445763946 0.730221808 1305031533.772000 -0.8006 0.0873 1.5078 0.7602 -0.5230 0.1759 -0.3430
1305031533.807707 -2.487299919 0.127788723 0.197456419 0.007843481 0.527166367 0.453643650 0.718499482 1305031533.812100 -0.8118 0.0982 1.5101 0.7553 -0.5301 0.1816 -0.3400
1305031533.839329 -2.481762886 0.090185523 0.233735442 0.006157675 0.536392212 0.455373734 0.710549235 1305031533.842100 -0.8203 0.1087 1.5118 0.7537 -0.5263 0.1763 -0.3520
1305031533.875471 -2.494186640 0.082776368 0.266642749 0.021276966 0.529272377 0.450978696 0.718356609 1305031533.872100 -0.8296 0.1207 1.5127 0.7565 -0.5205 0.1576 -0.3634
1305031533.907441 -2.491076469 0.041283607 0.271202564 0.024903500 0.507038534 0.458702445 0.729303658 1305031533.912100 -0.8425 0.1386 1.5142 0.7615 -0.5053 0.1330 -0.3835
1305031533.939530 -2.516552925 0.047504127 0.238348961 0.047065847 0.468792588 0.452090979 0.757385015 1305031533.942100 -0.8518 0.1528 1.5154 0.7656 -0.4924 0.1110 -0.3989
1305031533.975439 -2.518206120 0.035504162 0.245734572 0.058757532 0.442226231 0.449354142 0.773992479 1305031533.972100 -0.8613 0.1674 1.5166 0.7701 -0.4781 0.0919 -0.4122
1305031534.007323 -2.522070408 0.030651838 0.269739866 0.074379072 0.424867719 0.434714079 0.790556014 1305031534.012100 -0.8731 0.1861 1.5196 0.7745 -0.4534 0.0747 -0.4347
1305031534.039458 -2.525323868 0.031153053 0.294346213 0.093646266 0.411472708 0.416421056 0.805303693 1305031534.042400 -0.8812 0.1993 1.5223 0.7740 -0.4384 0.0651 -0.4521
1305031534.075484 -2.527844429 0.005879700 0.290710688 0.102568306 0.395681024 0.410351425 0.815185845 1305031534.072000 -0.8891 0.2116 1.5251 0.7735 -0.4274 0.0564 -0.4646
1305031534.107442 -2.509663582 -0.000164211 0.297157168 0.118322596 0.380633146 0.401970237 0.824340999 1305031534.112100 -0.8978 0.2268 1.5302 0.7687 -0.4106 0.0518 -0.4877
1305031534.139529 -2.515332699 -0.004984342 0.305678964 0.136906967 0.381094605 0.380838871 0.831255198 1305031534.142100 -0.9036 0.2372 1.5342 -0.7630 0.4019 -0.0578 0.5029
1305031534.175381 -2.519822121 -0.016826987 0.313684344 0.145301342 0.387428135 0.369678199 0.831940532 1305031534.172100 -0.9080 0.2469 1.5384 -0.7603 0.3966 -0.0641 0.5105
1305031534.207436 -2.514250755 -0.026365928 0.318906784 0.157322481 0.387293041 0.360694915 0.833758295 1305031534.212100 -0.9128 0.2595 1.5444 -0.7544 0.3870 -0.0689 0.5257
1305031534.239529 -2.539515495 -0.046969280 0.332203507 0.164375901 0.394717157 0.346872985 0.834780276 1305031534.242100 -0.9154 0.2686 1.5487 -0.7534 0.3819 -0.0694 0.5307
1305031534.275475 -2.539156914 -0.059264474 0.338053226 0.165088028 0.390646636 0.344265968 0.837628841 1305031534.272200 -0.9168 0.2777 1.5525 -0.7542 0.3771 -0.0664 0.5335
1305031534.307945 -2.530802250 -0.060429852 0.341664553 0.169979781 0.384970367 0.340386689 0.840857625 1305031534.312000 -0.9169 0.2883 1.5574 -0.7534 0.3733 -0.0633 0.5377
1305031534.339859 -2.521246910 -0.069512054 0.339248180 0.172835022 0.384264350 0.336919159 0.841994345 1305031534.342000 -0.9162 0.2956 1.5612 -0.7514 0.3700 -0.0670 0.5422
1305031534.375478 -2.510234356 -0.074497841 0.341840625 0.178481773 0.385017306 0.330248743 0.843114257 1305031534.372100 -0.9148 0.3024 1.5648 -0.7494 0.3659 -0.0706 0.5473
1305031534.407595 -2.502387524 -0.073711179 0.350775838 0.185380980 0.390234888 0.322641522 0.842171669 1305031534.412000 -0.9117 0.3105 1.5689 -0.7452 0.3631 -0.0789 0.5537
1305031534.439543 -2.497386456 -0.093112804 0.348100901 0.188917145 0.394708693 0.317403704 0.841290832 1305031534.442100 -0.9096 0.3159 1.5720 -0.7398 0.3600 -0.0843 0.5621
1305031534.475605 -2.508030891 -0.096727684 0.349948883 0.202409476 0.397034079 0.307588607 0.840704203 1305031534.472000 -0.9073 0.3211 1.5747 -0.7346 0.3534 -0.0858 0.5728
1305031534.507525 -2.513030767 -0.098866895 0.358188152 0.208240017 0.396031886 0.303713262 0.841161728 1305031534.512100 -0.9039 0.3280 1.5767 -0.7328 0.3496 -0.0824 0.5779
1305031534.539582 -2.507566452 -0.104811817 0.352421045 0.211017177 0.389043182 0.303856760 0.843675435 1305031534.542100 -0.9013 0.3327 1.5776 -0.7320 0.3461 -0.0775 0.5817
1305031534.575414 -2.503450871 -0.112628430 0.353872776 0.218233496 0.382777303 0.299629837 0.846213698 1305031534.572200 -0.8988 0.3367 1.5782 -0.7293 0.3405 -0.0729 0.5890
1305031534.607494 -2.506536484 -0.110696495 0.363127470 0.225588515 0.377713889 0.294075668 0.848505497 1305031534.612100 -0.8952 0.3420 1.5776 -0.7279 0.3328 -0.0662 0.5959
1305031534.639696 -2.503484249 -0.108837724 0.372636080 0.227866113 0.369029462 0.290562332 0.852917254 1305031534.642100 -0.8925 0.3455 1.5760 -0.7301 0.3265 -0.0575 0.5975
1305031534.675511 -2.492532253 -0.103188008 0.370034814 0.228385061 0.357260853 0.289308667 0.858198941 1305031534.672100 -0.8896 0.3487 1.5737 -0.7319 0.3222 -0.0500 0.5983
1305031534.707481 -2.485138655 -0.102599353 0.372555852 0.230306551 0.351113051 0.289501607 0.860155404 1305031534.712000 -0.8854 0.3517 1.5702 -0.7313 0.3182 -0.0450 0.6016
1305031534.739665 -2.484596968 -0.100126177 0.377577662 0.233117744 0.348080009 0.284176469 0.862403750 1305031534.742000 -0.8826 0.3538 1.5675 -0.7310 0.3134 -0.0426 0.6047
1305031534.775491 -2.476128578 -0.096007377 0.378718615 0.231849805 0.344296396 0.279460281 0.865798831 1305031534.772000 -0.8801 0.3553 1.5645 -0.7341 0.3082 -0.0419 0.6036
1305031534.807516 -2.479419231 -0.098456800 0.382138669 0.232955262 0.342128605 0.276722431 0.867239594 1305031534.812300 -0.8764 0.3566 1.5610 -0.7339 0.3027 -0.0386 0.6068
1305031534.839569 -2.474008083 -0.098384172 0.383742988 0.235601291 0.336164504 0.274177164 0.869662166 1305031534.842100 -0.8743 0.3574 1.5589 -0.7327 0.2983 -0.0349 0.6107
1305031534.875499 -2.473700047 -0.100941092 0.379047692 0.239664942 0.330350608 0.268484533 0.872551024 1305031534.872000 -0.8728 0.3572 1.5574 -0.7320 0.2897 -0.0326 0.6157
1305031534.907458 -2.462567806 -0.077032477 0.388846576 0.247359633 0.325489283 0.253998041 0.876558602 1305031534.912000 -0.8710 0.3558 1.5555 -0.7320 0.2792 -0.0331 0.6206
1305031534.939556 -2.444954872 -0.074731708 0.383425176 0.244691864 0.329881698 0.248058364 0.877365947 1305031534.942100 -0.8701 0.3537 1.5544 -0.7316 0.2799 -0.0423 0.6202
1305031534.975464 -2.447574615 -0.087634981 0.377884507 0.245689943 0.341680646 0.243470728 0.873849452 1305031534.972200 -0.8699 0.3510 1.5542 -0.7275 0.2783 -0.0543 0.6248
1305031535.007643 -2.474707127 -0.098219663 0.378050506 0.249143511 0.350633234 0.234108135 0.871881425 1305031535.012000 -0.8709 0.3475 1.5543 -0.7234 0.2704 -0.0612 0.6324
1305031535.039655 -2.484711170 -0.094033569 0.383744895 0.254823238 0.347021520 0.226451635 0.873705268 1305031535.042100 -0.8721 0.3453 1.5544 -0.7221 0.2627 -0.0581 0.6373
1305031535.075490 -2.490309954 -0.077922344 0.386527240 0.256838411 0.339778155 0.221851140 0.877135634 1305031535.072100 -0.8732 0.3428 1.5536 -0.7252 0.2586 -0.0519 0.6360
1305031535.107796 -2.485105991 -0.084084183 0.381587386 0.256481826 0.335341483 0.227349862 0.877539277 1305031535.112100 -0.8736 0.3394 1.5537 -0.7236 0.2612 -0.0464 0.6372
1305031535.139465 -2.497114182 -0.080506861 0.386673331 0.259268075 0.331557512 0.228868634 0.877763569 1305031535.142100 -0.8746 0.3371 1.5537 -0.7235 0.2602 -0.0402 0.6381
1305031535.175406 -2.501357555 -0.084850401 0.380560577 0.256629437 0.320304066 0.230998740 0.882148623 1305031535.172000 -0.8757 0.3354 1.5538 -0.7265 0.2560 -0.0304 0.6369
1305031535.207514 -2.507165194 -0.076083064 0.395516157 0.257784516 0.308903843 0.229287982 0.886314034 1305031535.212100 -0.8779 0.3336 1.5540 -0.7317 0.2473 -0.0151 0.6351
1305031535.239511 -2.508190155 -0.083123326 0.381128371 0.252210677 0.294475734 0.230380237 0.892523825 1305031535.242000 -0.8796 0.3321 1.5543 -0.7350 0.2420 -0.0048 0.6335
1305031535.275537 -2.516230106 -0.091590047 0.374587357 0.249598593 0.283212036 0.231147692 0.896695197 1305031535.272100 -0.8813 0.3308 1.5548 -0.7366 0.2353 0.0053 0.6341
1305031535.307409 -2.513985872 -0.082861155 0.379425824 0.250247926 0.273793936 0.227888137 0.900266588 1305031535.312300 -0.8841 0.3284 1.5556 -0.7407 0.2274 0.0132 0.6321
1305031535.339468 -2.524769545 -0.096819907 0.364471257 0.245024681 0.266267389 0.227461323 0.904060841 1305031535.342000 -0.8865 0.3275 1.5563 -0.7418 0.2211 0.0189 0.6328
1305031535.375492 -2.508066654 -0.082167417 0.359986424 0.246013567 0.249888271 0.221310064 0.909975290 1305031535.372100 -0.8893 0.3264 1.5569 -0.7440 0.2117 0.0257 0.6333
1305031535.407712 -2.517795324 -0.087612152 0.358654797 0.243952572 0.244042814 0.217630327 0.912999094 1305031535.412000 -0.8931 0.3249 1.5580 -0.7475 0.2011 0.0310 0.6324
1305031535.439618 -2.517380238 -0.096719265 0.355501175 0.243272588 0.236081496 0.210878551 0.916850150 1305031535.442000 -0.8960 0.3239 1.5594 -0.7471 0.1911 0.0342 0.6357
1305031535.475595 -2.525013685 -0.121901900 0.358514369 0.240847513 0.232937336 0.200196058 0.920681357 1305031535.472100 -0.8990 0.3226 1.5615 -0.7463 0.1806 0.0362 0.6397
1305031535.507701 -2.527513027 -0.124854833 0.357313931 0.244569555 0.226931259 0.189113230 0.923538923 1305031535.512100 -0.9027 0.3202 1.5643 -0.7440 0.1659 0.0382 0.6462
1305031535.539515 -2.520640612 -0.117849320 0.355810046 0.250930548 0.220957011 0.177413553 0.925600469 1305031535.542000 -0.9052 0.3181 1.5664 -0.7405 0.1583 0.0376 0.6520
1305031535.575567 -2.521627426 -0.089750081 0.359997869 0.259528279 0.218902469 0.166549876 0.925736427 1305031535.572000 -0.9072 0.3161 1.5679 -0.7389 0.1520 0.0347 0.6555
1305031535.607524 -2.521935701 -0.084334582 0.361283183 0.256003499 0.219986618 0.161618426 0.927333593 1305031535.612100 -0.9090 0.3135 1.5681 -0.7430 0.1482 0.0303 0.6519
1305031535.639591 -2.525519133 -0.099532008 0.353511870 0.251005739 0.222428545 0.160986692 0.928226769 1305031535.642000 -0.9097 0.3112 1.5676 -0.7432 0.1459 0.0275 0.6523
1305031535.675500 -2.542366505 -0.070390671 0.364920378 0.254445463 0.224898025 0.156065360 0.927535415 1305031535.672000 -0.9099 0.3089 1.5660 -0.7457 0.1432 0.0276 0.6502
1305031535.707524 -2.533196688 -0.048950613 0.371234953 0.250741303 0.222163916 0.156319827 0.929158807 1305031535.712000 -0.9081 0.3065 1.5623 -0.7524 0.1450 0.0283 0.6419
1305031535.739708 -2.530488491 -0.059681207 0.362928569 0.240583122 0.221819267 0.162231907 0.930911779 1305031535.742000 -0.9060 0.3048 1.5588 -0.7553 0.1465 0.0288 0.6381
1305031535.775437 -2.528300285 -0.037037700 0.369252861 0.237273470 0.222667381 0.160663545 0.931830287 1305031535.772000 -0.9031 0.3027 1.5547 -0.7598 0.1478 0.0286 0.6325
1305031535.807496 -2.517880917 -0.035337478 0.366395891 0.228114337 0.223776191 0.167054370 0.932727635 1305031535.812100 -0.8979 0.2995 1.5487 -0.7657 0.1542 0.0275 0.6239
1305031535.840053 -2.521924973 -0.046104938 0.363354206 0.221608341 0.226980209 0.175988719 0.931878567 1305031535.842500 -0.8937 0.2964 1.5445 -0.7672 0.1589 0.0294 0.6207
1305031535.875502 -2.515576601 -0.027287364 0.361423910 0.218410507 0.225674495 0.181430027 0.931907177 1305031535.872000 -0.8893 0.2932 1.5399 -0.7710 0.1638 0.0315 0.6147
1305031535.907487 -2.495431900 -0.019688636 0.353645921 0.213503569 0.224690199 0.186321914 0.932316840 1305031535.912000 -0.8829 0.2878 1.5340 -0.7731 0.1722 0.0300 0.6097
1305031535.939747 -2.487156868 -0.000033617 0.354630709 0.211016029 0.230299488 0.191574737 0.930447996 1305031535.942000 -0.8775 0.2837 1.5292 -0.7759 0.1803 0.0262 0.6040
1305031535.975512 -2.493300438 0.007675409 0.364467442 0.203401506 0.241621360 0.198539510 0.927808702 1305031535.972000 -0.8721 0.2797 1.5238 -0.7807 0.1876 0.0217 0.5957
1305031536.007462 -2.474011421 0.037692726 0.345635176 0.194809034 0.240943596 0.208358616 0.927675724 1305031536.012100 -0.8648 0.2743 1.5159 -0.7881 0.1990 0.0172 0.5822
1305031536.039667 -2.467852116 0.045596078 0.345744848 0.183056936 0.248081028 0.217668235 0.926048875 1305031536.042000 -0.8593 0.2696 1.5097 -0.7932 0.2087 0.0138 0.5720
1305031536.075538 -2.463827133 0.058868378 0.344537437 0.172938868 0.255004585 0.228067219 0.923607171 1305031536.072100 -0.8538 0.2646 1.5034 -0.7982 0.2185 0.0102 0.5613
1305031536.107579 -2.464352846 0.065723002 0.339826465 0.157930434 0.263877481 0.238714099 0.921109200 1305031536.112000 -0.8464 0.2572 1.4948 -0.8058 0.2333 0.0053 0.5443
1305031536.139540 -2.447302103 0.079109594 0.338419259 0.147143051 0.270921320 0.251267642 0.917504847 1305031536.142000 -0.8409 0.2513 1.4888 -0.8092 0.2469 0.0001 0.5331
1305031536.175699 -2.445563793 0.085700475 0.330733180 0.135411739 0.281893373 0.265629113 0.911943495 1305031536.172000 -0.8352 0.2451 1.4829 -0.8122 0.2614 -0.0059 0.5215
1305031536.207474 -2.441941738 0.095868863 0.320971668 0.124354601 0.293078780 0.279410154 0.905853629 1305031536.212000 -0.8278 0.2360 1.4754 -0.8151 0.2816 -0.0150 0.5060
1305031536.239482 -2.437371016 0.108465016 0.324892282 0.113946706 0.307447881 0.293251157 0.898051083 1305031536.242000 -0.8223 0.2290 1.4702 0.8167 -0.2995 0.0211 -0.4928
1305031536.275618 -2.426590443 0.117966525 0.320558310 0.104468167 0.318782955 0.312442362 0.888731480 1305031536.272100 -0.8172 0.2216 1.4653 0.8165 -0.3179 0.0275 -0.4812
1305031536.307472 -2.440175056 0.117216967 0.312307239 0.094648480 0.336902171 0.328140229 0.877418101 1305031536.312000 -0.8109 0.2114 1.4596 0.8138 -0.3420 0.0365 -0.4685
1305031536.339530 -2.436631680 0.130167663 0.306512594 0.089301601 0.348710299 0.343676478 0.867359698 1305031536.342000 -0.8062 0.2034 1.4554 0.8112 -0.3594 0.0420 -0.4594
1305031536.375786 -2.439515114 0.132933110 0.301771998 0.081246413 0.363291353 0.360202610 0.855378568 1305031536.372000 -0.8023 0.1953 1.4514 0.8082 -0.3775 0.0480 -0.4495
1305031536.407665 -2.432479382 0.142758548 0.297667384 0.078064978 0.374809980 0.374079108 0.844682276 1305031536.412000 -0.7976 0.1839 1.4470 0.8027 -0.3997 0.0557 -0.4391
1305031536.439546 -2.433453083 0.153478473 0.294296980 0.074165478 0.387280375 0.387593687 0.833237350 1305031536.442100 -0.7949 0.1760 1.4434 0.7985 -0.4161 0.0622 -0.4305
1305031536.475492 -2.433927059 0.153007686 0.283771873 0.066070586 0.395613164 0.401842564 0.823193431 1305031536.472100 -0.7928 0.1683 1.4399 0.7967 -0.4271 0.0660 -0.4224
1305031536.507648 -2.437728405 0.154942185 0.283716559 0.061836548 0.402845263 0.410541147 0.815688610 1305031536.512000 -0.7908 0.1586 1.4355 0.7922 -0.4404 0.0690 -0.4168
1305031536.539583 -2.445848703 0.154372066 0.278347254 0.058838084 0.406619072 0.419724584 0.809339404 1305031536.542000 -0.7900 0.1517 1.4321 0.7910 -0.4467 0.0667 -0.4126
1305031536.575660 -2.445181608 0.162155122 0.273602426 0.056845337 0.403639317 0.428008586 0.806630373 1305031536.572000 -0.7896 0.1449 1.4287 0.7904 -0.4519 0.0622 -0.4089
1305031536.607624 -2.447263956 0.166637331 0.269580424 0.056197397 0.403895319 0.436777979 0.801832557 1305031536.612100 -0.7891 0.1351 1.4239 0.7863 -0.4616 0.0595 -0.4064
1305031536.639838 -2.446949959 0.174991399 0.265062809 0.055862956 0.402609974 0.444791108 0.798088610 1305031536.642000 -0.7892 0.1279 1.4197 0.7852 -0.4673 0.0552 -0.4026
1305031536.675456 -2.458647728 0.185282081 0.269658625 0.055378947 0.401705623 0.449217498 0.796096385 1305031536.672200 -0.7898 0.1211 1.4151 0.7863 -0.4692 0.0488 -0.3990
1305031536.707472 -2.458661079 0.194786012 0.265215337 0.053375706 0.397145092 0.451481640 0.797239721 1305031536.712000 -0.7907 0.1111 1.4092 0.7875 -0.4694 0.0469 -0.3967
1305031536.739722 -2.457170963 0.209136844 0.263571143 0.051791303 0.397560120 0.451596081 0.797072470 1305031536.742000 -0.7915 0.1028 1.4049 0.7882 -0.4709 0.0494 -0.3932
1305031536.775321 -2.459605694 0.213813275 0.253003061 0.047947846 0.399795353 0.450778633 0.796657622 1305031536.772000 -0.7919 0.0946 1.4005 0.7889 -0.4679 0.0543 -0.3947
1305031536.807301 -2.470071316 0.219247073 0.252434611 0.046612799 0.402127534 0.444240719 0.799231470 1305031536.812000 -0.7928 0.0823 1.3947 0.7935 -0.4597 0.0548 -0.3949
1305031536.839527 -2.473621845 0.230190158 0.249726832 0.043481130 0.400365233 0.439933419 0.802667856 1305031536.842000 -0.7930 0.0724 1.3906 0.7964 -0.4563 0.0537 -0.3932
1305031536.875419 -2.474405527 0.239295781 0.241363108 0.040360861 0.397696674 0.437090307 0.805704951 1305031536.872000 -0.7928 0.0619 1.3871 0.7991 -0.4509 0.0552 -0.3938
1305031536.907491 -2.477398872 0.251485139 0.233837783 0.038744722 0.398485363 0.427118480 0.810726881 1305031536.912000 -0.7913 0.0459 1.3836 0.8034 -0.4405 0.0624 -0.3958
1305031536.939530 -2.475243807 0.267049640 0.222921193 0.037661746 0.401001930 0.418288261 0.814133883 1305031536.942100 -0.7891 0.0325 1.3816 0.8041 -0.4370 0.0692 -0.3970
1305031536.975375 -2.475587368 0.272273898 0.208136916 0.036617041 0.403692365 0.415439963 0.814310312 1305031536.972000 -0.7863 0.0186 1.3800 0.8047 -0.4335 0.0732 -0.3991
1305031537.007412 -2.480687141 0.286470264 0.198777080 0.038141515 0.406286210 0.405736417 0.817835391 1305031537.012000 -0.7806 -0.0011 1.3785 0.8068 -0.4257 0.0779 -0.4023
1305031537.039427 -2.481499672 0.298502326 0.183583617 0.036993023 0.407842666 0.400283813 0.819797993 1305031537.042000 -0.7753 -0.0166 1.3778 0.8079 -0.4228 0.0810 -0.4024
1305031537.075341 -2.480474949 0.307426870 0.167606831 0.035551440 0.406900048 0.397346139 0.821756959 1305031537.072000 -0.7691 -0.0326 1.3776 0.8101 -0.4180 0.0813 -0.4030
1305031537.107337 -2.478616238 0.323101044 0.154676080 0.034348350 0.406814277 0.389715523 0.825496316 1305031537.112100 -0.7590 -0.0549 1.3782 0.8134 -0.4105 0.0850 -0.4032
1305031537.140656 -2.475228071 0.333536685 0.135697484 0.032072879 0.408557355 0.383278221 0.827737868 1305031537.142100 -0.7503 -0.0723 1.3797 0.8151 -0.4050 0.0895 -0.4045
1305031537.175377 -2.474686146 0.339814693 0.113894701 0.029795012 0.408785611 0.376390457 0.830865085 1305031537.172000 -0.7409 -0.0897 1.3814 0.8177 -0.3975 0.0917 -0.4063
1305031537.207445 -2.471208096 0.346150368 0.094327927 0.027244747 0.406723291 0.369998306 0.834826410 1305031537.212100 -0.7273 -0.1129 1.3846 0.8216 -0.3863 0.0933 -0.4088
1305031537.239415 -2.470462799 0.352641463 0.073226452 0.025869919 0.404234976 0.361420095 0.839821637 1305031537.242000 -0.7164 -0.1302 1.3875 0.8246 -0.3779 0.0925 -0.4107
1305031537.275504 -2.463910341 0.366439939 0.055402637 0.025631970 0.399650276 0.353120208 0.845534623 1305031537.272000 -0.7050 -0.1473 1.3909 0.8282 -0.3692 0.0912 -0.4117
1305031537.307646 -2.456044436 0.377606422 0.037124276 0.024207262 0.395617157 0.344901860 0.850848854 1305031537.312000 -0.6900 -0.1700 1.3964 0.8328 -0.3566 0.0911 -0.4135
1305031537.339718 -2.454226971 0.380983979 0.015969038 0.021951782 0.391328186 0.336386442 0.856285274 1305031537.342000 -0.6789 -0.1866 1.4007 0.8362 -0.3457 0.0895 -0.4162
1305031537.375388 -2.448002338 0.390101254 -0.004233837 0.022183478 0.384686410 0.325400829 0.863503635 1305031537.372000 -0.6680 -0.2028 1.4055 0.8395 -0.3335 0.0881 -0.4199
1305031537.407396 -2.449275970 0.396866947 -0.020678401 0.021632679 0.379469097 0.314249426 0.869932532 1305031537.412100 -0.6533 -0.2237 1.4111 0.8446 -0.3183 0.0827 -0.4226
1305031537.439649 -2.446128368 0.404278010 -0.036110878 0.020907676 0.370659351 0.305410951 0.876868665 1305031537.442000 -0.6428 -0.2384 1.4155 0.8489 -0.3056 0.0770 -0.4243
1305031537.475520 -2.439011097 0.406688839 -0.061228514 0.017715627 0.357762247 0.295340031 0.885701180 1305031537.472100 -0.6317 -0.2522 1.4199 0.8525 -0.2906 0.0729 -0.4283
1305031537.507492 -2.433415413 0.419464588 -0.077783227 0.017850386 0.348879457 0.281871945 0.893595397 1305031537.512100 -0.6163 -0.2696 1.4255 0.8584 -0.2744 0.0685 -0.4279
1305031537.539497 -2.424970865 0.427145600 -0.096527219 0.013288771 0.341013014 0.273742557 0.899221063 1305031537.542000 -0.6043 -0.2815 1.4295 0.8628 -0.2647 0.0657 -0.4257
1305031537.575529 -2.416433811 0.424252868 -0.114988923 0.008788164 0.335850269 0.268167585 0.902891755 1305031537.572000 -0.5917 -0.2926 1.4341 0.8637 -0.2568 0.0648 -0.4289
1305031537.607507 -2.409738064 0.426428556 -0.129850388 0.011853638 0.331110299 0.263940156 0.905848265 1305031537.612000 -0.5749 -0.3067 1.4410 0.8645 -0.2473 0.0600 -0.4334
1305031537.643442 -2.403064728 0.425197005 -0.144210219 0.013446080 0.321924359 0.257794529 0.910892904 1305031537.642000 -0.5618 -0.3160 1.4461 0.8664 -0.2360 0.0521 -0.4369
1305031537.675306 -2.383370161 0.429673761 -0.165537953 0.016942848 0.307270676 0.250909269 0.917792022 1305031537.672000 -0.5480 -0.3252 1.4515 0.8669 -0.2258 0.0463 -0.4419
1305031537.707483 -2.367820978 0.434611320 -0.183047533 0.023042943 0.300594747 0.241590112 0.922358990 1305031537.712100 -0.5282 -0.3365 1.4587 0.8656 -0.2137 0.0452 -0.4505
1305031537.743426 -2.357103348 0.436346322 -0.200175166 0.026739547 0.296924055 0.230938584 0.926168740 1305031537.742000 -0.5128 -0.3439 1.4636 0.8650 -0.2030 0.0451 -0.4567
1305031537.775469 -2.345154762 0.436228454 -0.215623140 0.031504516 0.292673916 0.220556691 0.929894745 1305031537.772000 -0.4964 -0.3510 1.4683 0.8639 -0.1936 0.0445 -0.4628
1305031537.807576 -2.332725763 0.437442362 -0.232718349 0.036058549 0.287114888 0.213646129 0.933070302 1305031537.812000 -0.4739 -0.3594 1.4736 0.8625 -0.1838 0.0405 -0.4698
1305031537.843458 -2.321528196 0.439466208 -0.242594838 0.039189421 0.281446338 0.204882905 0.936629653 1305031537.842000 -0.4568 -0.3654 1.4768 0.8632 -0.1737 0.0363 -0.4726
1305031537.875571 -2.303071260 0.446234703 -0.255805552 0.043328285 0.274388492 0.194091976 0.940830469 1305031537.872000 -0.4385 -0.3708 1.4798 0.8618 -0.1639 0.0342 -0.4788
1305031537.907514 -2.286628485 0.455530316 -0.269227803 0.046794742 0.269874752 0.186064452 0.943587780 1305031537.912000 -0.4128 -0.3778 1.4829 0.8620 -0.1543 0.0328 -0.4818
1305031537.943469 -2.272041321 0.462078482 -0.283584833 0.047033090 0.264940441 0.179348215 0.946270943 1305031537.942000 -0.3926 -0.3829 1.4845 0.8637 -0.1464 0.0301 -0.4814
1305031537.975426 -2.251107693 0.461491793 -0.296254754 0.044358656 0.259097368 0.173583895 0.949088752 1305031537.972000 -0.3719 -0.3878 1.4859 0.8643 -0.1387 0.0280 -0.4826
1305031538.007529 -2.229588747 0.470835775 -0.309528232 0.047630455 0.253619969 0.166543961 0.951667666 1305031538.012000 -0.3428 -0.3932 1.4881 0.8640 -0.1303 0.0249 -0.4858
1305031538.043452 -2.211060286 0.474047422 -0.323441267 0.045349691 0.247003049 0.165013984 0.953783631 1305031538.042000 -0.3204 -0.3968 1.4899 0.8669 -0.1242 0.0197 -0.4824
1305031538.075565 -2.186341524 0.467476308 -0.335640311 0.042752337 0.237968117 0.163011357 0.956541002 1305031538.072000 -0.2982 -0.3994 1.4928 0.8669 -0.1172 0.0139 -0.4842
1305031538.107629 -2.172956228 0.465572953 -0.346409380 0.047791850 0.228774801 0.163162008 0.958517671 1305031538.112000 -0.2687 -0.4020 1.4983 0.8647 -0.1131 -0.0021 -0.4894
1305031538.143487 -2.150013208 0.468543619 -0.359851301 0.051771726 0.213106111 0.166781723 0.961295664 1305031538.142000 -0.2480 -0.4030 1.5031 0.8650 -0.1091 -0.0149 -0.4895
1305031538.175565 -2.115583420 0.456076264 -0.374473453 0.050717145 0.196758941 0.163353741 0.965416610 1305031538.172000 -0.2277 -0.4040 1.5087 0.8642 -0.0989 -0.0221 -0.4929
1305031538.207697 -2.086136580 0.452993035 -0.387118995 0.059380531 0.188062429 0.154780805 0.968064785 1305031538.212000 -0.2009 -0.4057 1.5179 -0.8581 0.0892 0.0261 0.5049
1305031538.243517 -2.075634003 0.454578370 -0.396912575 0.070111699 0.186482102 0.146578565 0.968929052 1305031538.242000 -0.1819 -0.4076 1.5248 -0.8546 0.0817 0.0270 0.5122
1305031538.275489 -2.066353798 0.449201852 -0.413849115 0.076822840 0.182904467 0.133959338 0.970926940 1305031538.272000 -0.1637 -0.4097 1.5315 -0.8516 0.0714 0.0285 0.5185
1305031538.307386 -2.050451756 0.439011306 -0.432016730 0.085877068 0.177491903 0.124584749 0.972419858 1305031538.312000 -0.1396 -0.4126 1.5402 -0.8442 0.0575 0.0315 0.5321
1305031538.343413 -2.041750193 0.442959189 -0.442232251 0.098665021 0.171809301 0.110846415 0.973889053 1305031538.342000 -0.1213 -0.4149 1.5462 -0.8398 0.0456 0.0352 0.5399
1305031538.375553 -2.020997763 0.444020361 -0.456723094 0.108034529 0.161098853 0.102323376 0.975656509 1305031538.372000 -0.1028 -0.4174 1.5511 -0.8356 0.0370 0.0405 0.5465
1305031538.407511 -1.999992847 0.449072838 -0.465597630 0.119483322 0.152188063 0.095375851 0.976455808 1305031538.412100 -0.0771 -0.4212 1.5568 -0.8293 0.0286 0.0486 0.5559
1305031538.443598 -1.988971233 0.445716232 -0.476679206 0.126699254 0.143602028 0.090528235 0.977307737 1305031538.442000 -0.0574 -0.4243 1.5597 -0.8229 0.0198 0.0566 0.5651
1305031538.475570 -1.966818571 0.457942694 -0.490309834 0.137053713 0.129073486 0.082087606 0.978681743 1305031538.472000 -0.0375 -0.4280 1.5615 -0.8182 0.0100 0.0649 0.5711
1305031538.507548 -1.959497213 0.477629960 -0.499859691 0.144832328 0.119308852 0.073370859 0.979492605 1305031538.512000 -0.0105 -0.4337 1.5614 -0.8153 -0.0011 0.0768 0.5739
1305031538.543450 -1.937832594 0.486074835 -0.517244756 0.144301921 0.106128760 0.068350643 0.981448829 1305031538.542000 0.0102 -0.4389 1.5592 -0.8145 -0.0107 0.0841 0.5739
1305031538.575524 -1.929704785 0.505659997 -0.529037654 0.143234283 0.099686898 0.058025595 0.982944310 1305031538.572000 0.0316 -0.4444 1.5551 -0.8159 -0.0222 0.0880 0.5710
1305031538.607517 -1.917625189 0.522034287 -0.548934579 0.134958372 0.095414005 0.052685272 0.984838426 1305031538.612000 0.0615 -0.4524 1.5468 -0.8221 -0.0315 0.0910 0.5611
1305031538.643479 -1.872731209 0.517078698 -0.552773654 0.125329182 0.087853469 0.051589802 0.986870229 1305031538.642000 0.0846 -0.4592 1.5402 -0.8219 -0.0380 0.0910 0.5611
1305031538.675433 -1.867845297 0.538020253 -0.572704017 0.123551764 0.085596375 0.045506358 0.987591684 1305031538.672000 0.1077 -0.4676 1.5329 -0.8235 -0.0455 0.0933 0.5577
1305031538.707490 -1.864077687 0.588099182 -0.575082064 0.118586965 0.079131253 0.037873846 0.989060640 1305031538.712000 0.1386 -0.4775 1.5210 -0.8333 -0.0576 0.1037 0.5400
1305031538.743572 -1.842768908 0.602613747 -0.583029389 0.100135505 0.065253392 0.038791075 0.992073655 1305031538.741900 0.1622 -0.4851 1.5121 -0.8414 -0.0647 0.1142 0.5243
1305031538.775491 -1.808506608 0.612143576 -0.587957203 0.083568975 0.050672978 0.040162511 0.994402051 1305031538.772000 0.1859 -0.4925 1.5037 -0.8466 -0.0690 0.1221 0.5133
1305031538.808089 -1.776121497 0.627694011 -0.614248276 0.064850152 0.038909949 0.043278445 0.996196508 1305031538.812000 0.2179 -0.5016 1.4926 0.8583 0.0778 -0.1264 -0.4913
1305031538.843518 -1.745872855 0.634320140 -0.621743321 0.043176636 0.033306401 0.040051538 0.997708559 1305031538.842200 0.2425 -0.5076 1.4853 0.8658 0.0862 -0.1243 -0.4769
1305031538.875656 -1.719307780 0.640127897 -0.629967332 0.028009932 0.031812642 0.030972498 0.998621106 1305031538.872300 0.2676 -0.5130 1.4788 0.8702 0.0909 -0.1218 -0.4687
1305031538.907498 -1.698012948 0.656083047 -0.637265265 0.017319027 0.031858522 0.028690850 0.998930395 1305031538.912000 0.3016 -0.5184 1.4707 0.8771 0.0940 -0.1212 -0.4552
1305031538.943414 -1.670735598 0.663528383 -0.647517562 0.003978760 0.029164914 0.031634476 0.999065995 1305031538.942000 0.3273 -0.5213 1.4650 0.8819 0.0956 -0.1219 -0.4452
1305031538.975507 -1.641356826 0.668834805 -0.656999290 -0.007588186 0.026002984 0.031613108 0.999133110 1305031538.972000 0.3532 -0.5236 1.4599 0.8853 0.0978 -0.1219 -0.4380
1305031539.007520 -1.614311814 0.676686764 -0.663344562 -0.016297549 0.025241166 0.031325128 0.999057591 1305031539.012000 0.3877 -0.5251 1.4533 0.8895 0.1011 -0.1217 -0.4287
1305031539.043445 -1.588739157 0.681602955 -0.672061861 -0.025435511 0.024757234 0.030335179 0.998909354 1305031539.041900 0.4138 -0.5251 1.4483 0.8917 0.1043 -0.1207 -0.4237
1305031539.075515 -1.559401631 0.690165758 -0.677179098 -0.031163834 0.022377810 0.026248308 0.998918951 1305031539.072000 0.4400 -0.5239 1.4432 0.8932 0.1093 -0.1209 -0.4191
1305031539.107503 -1.531127334 0.701139092 -0.685189128 -0.038777649 0.019281631 0.022528598 0.998807788 1305031539.111900 0.4749 -0.5207 1.4359 0.8972 0.1170 -0.1198 -0.4086
1305031539.143607 -1.504884005 0.704943478 -0.685461402 -0.048340186 0.016956285 0.018361038 0.998518169 1305031539.141900 0.5010 -0.5165 1.4301 0.8986 0.1243 -0.1200 -0.4033
1305031539.175587 -1.475024581 0.712328196 -0.687175632 -0.057385031 0.010461451 0.012882610 0.998214185 1305031539.172000 0.5268 -0.5113 1.4238 0.9014 0.1332 -0.1217 -0.3935
1305031539.207601 -1.448814034 0.720294237 -0.690965533 -0.070889175 0.002622218 0.008054467 0.997448266 1305031539.212000 0.5606 -0.5026 1.4150 0.9057 0.1483 -0.1270 -0.3763
1305031539.243449 -1.423272729 0.722043812 -0.692014039 -0.087852731 -0.010045309 0.001600557 0.996081531 1305031539.242000 0.5856 -0.4955 1.4087 0.9079 0.1628 -0.1339 -0.3623
1305031539.275652 -1.385869741 0.733055174 -0.687900424 -0.097857974 -0.025742125 -0.007350900 0.994840264 1305031539.272000 0.6103 -0.4880 1.4031 0.9095 0.1756 -0.1373 -0.3509
1305031539.307521 -1.363128185 0.738756001 -0.692190886 -0.112825640 -0.031548198 -0.022772927 0.992852688 1305031539.312000 0.6429 -0.4775 1.3960 0.9125 0.1975 -0.1344 -0.3322
1305031539.343842 -1.323267698 0.727967501 -0.687267542 -0.137726113 -0.042174865 -0.039176177 0.988796234 1305031539.341900 0.6670 -0.4698 1.3914 0.9140 0.2181 -0.1263 -0.3180
1305031539.375556 -1.292063594 0.731553078 -0.688167214 -0.152118564 -0.044961520 -0.060505841 0.985483348 1305031539.372000 0.6904 -0.4615 1.3873 0.9138 0.2378 -0.1155 -0.3083
1305031539.407846 -1.256202459 0.736403048 -0.690131187 -0.166987866 -0.048303399 -0.079108998 0.981592357 1305031539.412000 0.7226 -0.4505 1.3817 0.9151 0.2611 -0.1011 -0.2902
1305031539.443431 -1.239374042 0.732561350 -0.688703060 -0.187255442 -0.044807911 -0.095311783 0.976649046 1305031539.441900 0.7455 -0.4420 1.3792 0.9151 0.2746 -0.0963 -0.2793
1305031539.475605 -1.207395792 0.727674007 -0.686424911 -0.198093310 -0.055724174 -0.107997023 0.972620428 1305031539.472000 0.7681 -0.4338 1.3785 0.9133 0.2880 -0.0990 -0.2703
1305031539.507506 -1.182625055 0.724227071 -0.686838031 -0.206699759 -0.067789100 -0.114068963 0.969364822 1305031539.512000 0.7969 -0.4221 1.3783 0.9107 0.3018 -0.1077 -0.2607
1305031539.543459 -1.156865954 0.727579236 -0.692468286 -0.210137725 -0.077920467 -0.120466612 0.967087567 1305031539.541900 0.8185 -0.4131 1.3799 0.9097 0.3103 -0.1121 -0.2524
1305031539.575448 -1.125167608 0.731797397 -0.695762694 -0.207746223 -0.089327753 -0.127441183 0.965722919 1305031539.572100 0.8394 -0.4036 1.3831 0.9066 0.3189 -0.1161 -0.2508
1305031539.607559 -1.096604705 0.724759758 -0.689471424 -0.207956731 -0.100324258 -0.138952374 0.963006377 1305031539.612000 0.8668 -0.3908 1.3881 0.9008 0.3337 -0.1195 -0.2507
1305031539.643437 -1.072627783 0.721304774 -0.693208039 -0.205536246 -0.106156208 -0.152068138 0.960916698 1305031539.642000 0.8868 -0.3801 1.3920 0.8957 0.3469 -0.1187 -0.2515
1305031539.675458 -1.047883391 0.715768039 -0.690714836 -0.198742777 -0.112813070 -0.165158719 0.959425390 1305031539.672000 0.9065 -0.3685 1.3961 0.8892 0.3591 -0.1196 -0.2571
1305031539.707426 -1.025400043 0.701733589 -0.689756632 -0.194463715 -0.120441034 -0.176434845 0.957365453 1305031539.712000 0.9321 -0.3518 1.4004 0.8799 0.3757 -0.1235 -0.2635
1305031539.743465 -1.004902124 0.689956009 -0.690350771 -0.192506403 -0.129271001 -0.186747491 0.954649508 1305031539.741900 0.9509 -0.3385 1.4027 0.8737 0.3874 -0.1277 -0.2651
1305031539.775488 -0.980612576 0.684934020 -0.686210513 -0.191102922 -0.138522878 -0.197194010 0.951528072 1305031539.772000 0.9692 -0.3245 1.4038 0.8690 0.3978 -0.1311 -0.2635
1305031539.807653 -0.959138870 0.672266126 -0.677491128 -0.191985384 -0.149717450 -0.204102859 0.948192120 1305031539.812000 0.9927 -0.3046 1.4042 0.8593 0.4147 -0.1402 -0.2644
1305031539.843466 -0.935089946 0.662431538 -0.672763884 -0.191587552 -0.165939346 -0.215486914 0.943039596 1305031539.841900 1.0099 -0.2894 1.4033 0.8527 0.4281 -0.1471 -0.2607
1305031539.875593 -0.912115693 0.657501757 -0.665441930 -0.193194956 -0.178932264 -0.225975111 0.937866807 1305031539.872000 1.0268 -0.2734 1.4010 0.8464 0.4402 -0.1536 -0.2575
1305031539.907642 -0.888481855 0.657829106 -0.658304036 -0.192615226 -0.190825433 -0.239064530 0.932380378 1305031539.912000 1.0487 -0.2516 1.3969 0.8369 0.4601 -0.1579 -0.2511
1305031539.943541 -0.861202180 0.658063293 -0.649517477 -0.192435294 -0.200398549 -0.255857974 0.925929725 1305031539.942000 1.0649 -0.2347 1.3936 0.8313 0.4718 -0.1572 -0.2483
1305031539.975883 -0.835239351 0.655931950 -0.637984216 -0.186527535 -0.206472948 -0.266454458 0.922810078 1305031539.972000 1.0806 -0.2175 1.3908 0.8247 0.4814 -0.1575 -0.2516
1305031540.007422 -0.808597982 0.649707317 -0.631384254 -0.180847928 -0.211717591 -0.276316911 0.919847071 1305031540.011900 1.1010 -0.1948 1.3876 0.8176 0.4923 -0.1568 -0.2542
1305031540.043468 -0.785340905 0.648223341 -0.619920373 -0.171939909 -0.213694066 -0.284881830 0.918484509 1305031540.042000 1.1155 -0.1777 1.3861 0.8128 0.4959 -0.1568 -0.2624
1305031540.075632 -0.764056802 0.640574992 -0.604998469 -0.157320663 -0.218499139 -0.286103398 0.919594049 1305031540.072000 1.1293 -0.1610 1.3857 0.8054 0.4996 -0.1618 -0.2750
1305031540.107421 -0.743929267 0.630394340 -0.593521833 -0.145323813 -0.222985834 -0.289074093 0.919562101 1305031540.112000 1.1471 -0.1394 1.3861 0.8009 0.4979 -0.1656 -0.2884
1305031540.143443 -0.724296808 0.624339342 -0.590411842 -0.131762356 -0.219520926 -0.285627127 0.923507631 1305031540.141900 1.1599 -0.1240 1.3868 0.7992 0.4936 -0.1664 -0.3000
1305031540.175595 -0.718353570 0.584484100 -0.589187026 -0.133055523 -0.210224062 -0.285183579 0.925620019 1305031540.172000 1.1725 -0.1092 1.3889 0.7978 0.4866 -0.1677 -0.3141
1305031540.207411 -0.705765665 0.566360116 -0.582523525 -0.122678138 -0.204626724 -0.279072344 0.930159450 1305031540.212000 1.1891 -0.0909 1.3927 0.7949 0.4781 -0.1702 -0.3325
1305031540.243496 -0.689934194 0.549493968 -0.574076653 -0.107216306 -0.211302072 -0.274970651 0.931797862 1305031540.242000 1.2006 -0.0786 1.3963 0.7873 0.4753 -0.1815 -0.3483
1305031540.275604 -0.669214725 0.543804228 -0.575567901 -0.090439230 -0.218695179 -0.265583992 0.934589922 1305031540.272000 1.2120 -0.0668 1.3994 0.7851 0.4688 -0.1915 -0.3566
1305031540.307411 -0.663634419 0.518813431 -0.570268869 -0.089791723 -0.220319390 -0.256633133 0.936769068 1305031540.311900 1.2268 -0.0513 1.4038 0.7817 0.4606 -0.2029 -0.3683
1305031540.343456 -0.630638421 0.524296224 -0.568962038 -0.065242536 -0.227539778 -0.245172605 0.940137982 1305031540.342000 1.2383 -0.0400 1.4076 0.7808 0.4512 -0.2085 -0.3786
1305031540.375438 -0.607571483 0.504775465 -0.557604194 -0.058358882 -0.228627846 -0.232305616 0.943587661 1305031540.371900 1.2499 -0.0285 1.4118 0.7821 0.4385 -0.2102 -0.3896
1305031540.407504 -0.603281319 0.504000962 -0.563036203 -0.038072895 -0.219202042 -0.220019296 0.949785471 1305031540.411900 1.2651 -0.0149 1.4185 0.7798 0.4227 -0.2197 -0.4062
1305031540.443453 -0.583580017 0.497548491 -0.565587878 -0.025518924 -0.220925614 -0.205757141 0.952997684 1305031540.441900 1.2767 -0.0051 1.4233 0.7805 0.4103 -0.2267 -0.4137
1305031540.475476 -0.563415229 0.467252880 -0.554991245 -0.022460068 -0.225218147 -0.190151006 0.955308795 1305031540.472000 1.2884 0.0043 1.4285 0.7800 0.3966 -0.2328 -0.4244
1305031540.507525 -0.556039095 0.481065303 -0.565308809 0.002121243 -0.216947764 -0.175951973 0.960192740 1305031540.512000 1.3039 0.0161 1.4354 0.7783 0.3807 -0.2419 -0.4369
1305031540.543427 -0.531263828 0.471247196 -0.559479952 0.012727410 -0.217492461 -0.166357964 0.961696446 1305031540.542000 1.3156 0.0252 1.4398 0.7771 0.3703 -0.2445 -0.4464
1305031540.575635 -0.512232184 0.454040170 -0.555102587 0.025693521 -0.210669398 -0.159205973 0.964163721 1305031540.572000 1.3277 0.0346 1.4449 0.7751 0.3588 -0.2424 -0.4601
1305031540.607508 -0.496591151 0.458260536 -0.564910889 0.043473519 -0.197728246 -0.148222789 0.968010128 1305031540.611900 1.3444 0.0466 1.4509 0.7755 0.3410 -0.2386 -0.4748
1305031540.643443 -0.476872325 0.454683214 -0.563784540 0.051469114 -0.188012525 -0.139889464 0.970789969 1305031540.642000 1.3567 0.0557 1.4541 0.7788 0.3313 -0.2326 -0.4791
1305031540.675895 -0.459648341 0.440096706 -0.558765411 0.058293398 -0.175376907 -0.130663320 0.974049270 1305031540.672000 1.3695 0.0652 1.4574 0.7801 0.3162 -0.2271 -0.4898
1305031540.707442 -0.441697866 0.443029851 -0.564759016 0.068398118 -0.160899147 -0.117279202 0.977588236 1305031540.711900 1.3862 0.0775 1.4607 0.7833 0.2977 -0.2225 -0.4983
1305031540.743545 -0.418357909 0.441277683 -0.567061841 0.073828116 -0.146902055 -0.106285244 0.980649054 1305031540.741900 1.3992 0.0866 1.4626 -0.7868 -0.2834 0.2151 0.5044
1305031540.775513 -0.405562878 0.432843775 -0.571106315 0.080067277 -0.127250746 -0.096832111 0.983880103 1305031540.772000 1.4124 0.0952 1.4646 -0.7890 -0.2679 0.2065 0.5130
1305031540.807495 -0.367373288 0.426814705 -0.568240345 0.086171307 -0.112386338 -0.085204586 0.986247420 1305031540.812000 1.4298 0.1059 1.4665 -0.7945 -0.2435 0.1912 0.5225
1305031540.843557 -0.363738030 0.425649107 -0.573497534 0.091166906 -0.084287763 -0.075081035 0.989417493 1305031540.842000 1.4421 0.1129 1.4676 -0.7989 -0.2258 0.1770 0.5286
1305031540.875472 -0.350423843 0.419904500 -0.575834334 0.095350720 -0.062622644 -0.064919077 0.991348684 1305031540.872000 1.4529 0.1189 1.4687 -0.8015 -0.2106 0.1660 0.5345
1305031540.907447 -0.335099041 0.423602760 -0.567989409 0.102436796 -0.043491267 -0.054763194 0.992278278 1305031540.911900 1.4667 0.1263 1.4701 -0.8052 -0.1889 0.1499 0.5417
1305031540.943442 -0.328165412 0.423399955 -0.576092780 0.105638377 -0.022197032 -0.042974968 0.993227541 1305031540.941900 1.4757 0.1313 1.4708 -0.8083 -0.1703 0.1401 0.5458
1305031540.975401 -0.331152380 0.422505468 -0.585554719 0.108614571 -0.003733839 -0.029471897 0.993639946 1305031540.972000 1.4837 0.1364 1.4719 -0.8096 -0.1555 0.1355 0.5496
1305031541.007473 -0.325750709 0.421009272 -0.585331798 0.117120944 0.009012746 -0.019955896 0.992876232 1305031541.011900 1.4927 0.1423 1.4737 -0.8072 -0.1377 0.1302 0.5591
1305031541.043464 -0.321383506 0.417653948 -0.590196013 0.123160988 0.022381188 -0.005892111 0.992116809 1305031541.041900 1.4985 0.1457 1.4748 -0.8090 -0.1226 0.1257 0.5610
1305031541.075485 -0.318136930 0.414162636 -0.586976051 0.130555511 0.031758748 0.004967961 0.990919769 1305031541.062000 1.5017 0.1483 1.4756 -0.8070 -0.1139 0.1246 0.5660
1305031541.107513 -0.313763589 0.413694739 -0.587013483 0.135490999 0.036235854 0.010977799 0.990054846 1305031541.102000 1.5067 0.1533 1.4765 -0.8056 -0.1036 0.1241 0.5700
1305031541.143507 -0.304694206 0.409289896 -0.585462928 0.138134822 0.043164924 0.016679404 0.989331782 1305031541.142000 1.5112 0.1585 1.4771 -0.8051 -0.0931 0.1190 0.5735
1305031541.175472 -0.310802937 0.409850001 -0.586444676 0.144248098 0.055482406 0.021719206 0.987746179 1305031541.182000 1.5143 0.1627 1.4772 -0.8035 -0.0826 0.1142 0.5783
1305031541.207454 -0.319564879 0.411458343 -0.587499976 0.144369766 0.060454570 0.023192132 0.987403035 1305031541.211900 1.5150 0.1666 1.4765 -0.8055 -0.0825 0.1152 0.5754
1305031541.243593 -0.315941423 0.410138547 -0.582246304 0.139277130 0.056910511 0.025215400 0.988295138 1305031541.241900 1.5154 0.1710 1.4754 -0.8076 -0.0833 0.1178 0.5718
1305031541.275691 -0.317456484 0.410466731 -0.577797532 0.135335222 0.053566583 0.029127486 0.988921940 1305031541.271900 1.5154 0.1752 1.4740 -0.8104 -0.0832 0.1224 0.5668
1305031541.307436 -0.320667833 0.407514691 -0.581667304 0.127206117 0.045165200 0.027440397 0.990467429 1305031541.312000 1.5138 0.1808 1.4719 -0.8133 -0.0892 0.1304 0.5601
1305031541.343493 -0.320783675 0.404284894 -0.581204534 0.120780192 0.033553358 0.026900912 0.991747260 1305031541.341900 1.5120 0.1845 1.4705 -0.8154 -0.0966 0.1383 0.5538
1305031541.375507 -0.322730899 0.403215349 -0.576207697 0.112795971 0.021359019 0.024096526 0.993096292 1305031541.372000 1.5095 0.1883 1.4691 -0.8173 -0.1049 0.1467 0.5472
1305031541.407707 -0.325053096 0.401551068 -0.571487904 0.105356604 0.010560841 0.018267574 0.994210601 1305031541.411900 1.5063 0.1922 1.4679 -0.8202 -0.1184 0.1537 0.5382
1305031541.443699 -0.323895812 0.396923035 -0.564405322 0.099301122 -0.002184567 0.011418757 0.994989514 1305031541.441900 1.5028 0.1948 1.4675 -0.8196 -0.1308 0.1591 0.5347
1305031541.475389 -0.330995113 0.398851842 -0.566480577 0.095625229 -0.013498463 0.000006287 0.995325863 1305031541.472000 1.4990 0.1975 1.4676 -0.8181 -0.1457 0.1649 0.5314
1305031541.507656 -0.332430273 0.404239476 -0.554072380 0.090730980 -0.028513502 -0.014519179 0.995361269 1305031541.511900 1.4932 0.2003 1.4679 -0.8186 -0.1696 0.1703 0.5217
1305031541.543489 -0.334442765 0.403760970 -0.549880743 0.084816106 -0.041004047 -0.028539738 0.995143414 1305031541.541900 1.4890 0.2027 1.4681 -0.8171 -0.1852 0.1735 0.5177
1305031541.575608 -0.338075608 0.403206557 -0.545097172 0.077831641 -0.053034212 -0.041830186 0.994675756 1305031541.572000 1.4844 0.2043 1.4691 -0.8171 -0.2029 0.1751 0.5104
1305031541.607431 -0.342313856 0.396958947 -0.541230559 0.070878997 -0.067855574 -0.058606736 0.993447065 1305031541.611900 1.4775 0.2069 1.4705 -0.8122 -0.2290 0.1827 0.5045
1305031541.643543 -0.344978154 0.394813865 -0.536666572 0.066347539 -0.084289499 -0.074235402 0.991454661 1305031541.642000 1.4722 0.2081 1.4718 0.8086 0.2475 -0.1879 -0.4995
1305031541.675424 -0.362039626 0.412847966 -0.522563875 0.066771887 -0.097043350 -0.091278352 0.988833845 1305031541.672000 1.4666 0.2096 1.4737 0.8031 0.2691 -0.1924 -0.4955
1305031541.707418 -0.363308340 0.408682913 -0.516772211 0.061513890 -0.112714253 -0.113180205 0.985241950 1305031541.711900 1.4587 0.2109 1.4759 0.7957 0.2990 -0.1946 -0.4895
1305031541.743439 -0.372162968 0.411461860 -0.516744375 0.057580814 -0.125292465 -0.140889198 0.980375707 1305031541.742000 1.4522 0.2114 1.4775 0.7880 0.3276 -0.1935 -0.4841
1305031541.775415 -0.367096812 0.410249025 -0.511105001 0.053054515 -0.141373351 -0.175998315 0.972740114 1305031541.771900 1.4458 0.2118 1.4791 0.7784 0.3593 -0.1878 -0.4794
1305031541.807470 -0.352158606 0.392320901 -0.516195834 0.042372882 -0.153668091 -0.209438145 0.964741588 1305031541.812000 1.4376 0.2116 1.4804 0.7679 0.3979 -0.1721 -0.4715
1305031541.843441 -0.369609594 0.386087835 -0.514262795 0.033202291 -0.159071326 -0.240797132 0.956875443 1305031541.841900 1.4313 0.2109 1.4817 0.7576 0.4251 -0.1680 -0.4659
1305031541.875438 -0.378776968 0.382532716 -0.511354566 0.030135576 -0.173223391 -0.262821108 0.948688865 1305031541.872000 1.4260 0.2099 1.4833 0.7474 0.4474 -0.1700 -0.4607
1305031541.907570 -0.391135454 0.391082108 -0.510960639 0.027463950 -0.187817335 -0.277083099 0.941910446 1305031541.912000 1.4189 0.2096 1.4848 0.7368 0.4714 -0.1799 -0.4500
1305031541.943524 -0.395882905 0.383674622 -0.508292735 0.019306179 -0.210072711 -0.286395311 0.934598565 1305031541.942100 1.4142 0.2102 1.4859 0.7307 0.4849 -0.1921 -0.4404
1305031541.975524 -0.404854000 0.376954228 -0.507165134 0.013217873 -0.229773283 -0.290740162 0.928708613 1305031541.972000 1.4095 0.2116 1.4866 0.7251 0.4946 -0.2068 -0.4323
1305031542.007694 -0.408695042 0.377455771 -0.504928052 0.009174821 -0.252794862 -0.293451816 0.921898365 1305031542.012000 1.4030 0.2143 1.4865 0.7163 0.5084 -0.2295 -0.4193
1305031542.043489 -0.409190118 0.369457841 -0.501291037 0.002928849 -0.275375962 -0.297237188 0.914226234 1305031542.041900 1.3985 0.2168 1.4858 0.7092 0.5185 -0.2419 -0.4119
1305031542.075555 -0.406296730 0.363426834 -0.491632223 0.001360174 -0.289819598 -0.306024075 0.906836271 1305031542.072000 1.3936 0.2201 1.4841 0.7032 0.5275 -0.2466 -0.4080
1305031542.107416 -0.409732461 0.368367493 -0.483919084 0.001626465 -0.295283496 -0.316538393 0.901447952 1305031542.111900 1.3872 0.2253 1.4804 0.6955 0.5420 -0.2451 -0.4030
1305031542.143525 -0.415325880 0.366824538 -0.477543592 -0.001137646 -0.300087422 -0.329125494 0.895333827 1305031542.141900 1.3825 0.2295 1.4771 0.6903 0.5518 -0.2446 -0.3989
1305031542.175524 -0.417091846 0.361996323 -0.470778972 -0.005435700 -0.309051603 -0.332768947 0.890910983 1305031542.171900 1.3776 0.2343 1.4738 0.6857 0.5580 -0.2493 -0.3953
1305031542.207368 -0.423454314 0.373815566 -0.463671803 -0.008257775 -0.318195015 -0.337826222 0.885752320 1305031542.211900 1.3713 0.2411 1.4685 0.6806 0.5695 -0.2575 -0.3822
1305031542.244091 -0.425906926 0.364547580 -0.452925652 -0.015935086 -0.330807984 -0.343722612 0.878730297 1305031542.241900 1.3670 0.2468 1.4647 0.6762 0.5758 -0.2643 -0.3760
1305031542.275425 -0.409041196 0.360513717 -0.442239493 -0.020020498 -0.342880040 -0.342143446 0.874625862 1305031542.272000 1.3632 0.2538 1.4607 0.6738 0.5811 -0.2670 -0.3702
1305031542.307528 -0.402979463 0.356045395 -0.428641379 -0.025893871 -0.343946218 -0.349010229 0.871333718 1305031542.311900 1.3588 0.2635 1.4546 0.6744 0.5882 -0.2581 -0.3642
1305031542.343479 -0.405021936 0.351236522 -0.415592879 -0.028987205 -0.339690149 -0.356384903 0.869919658 1305031542.341900 1.3558 0.2719 1.4502 0.6740 0.5905 -0.2530 -0.3648
1305031542.375553 -0.405828923 0.353052139 -0.410191834 -0.031039501 -0.334536105 -0.356972635 0.871603489 1305031542.372000 1.3532 0.2813 1.4459 0.6748 0.5907 -0.2518 -0.3637
1305031542.407482 -0.403206855 0.347966403 -0.395288497 -0.039595507 -0.335880280 -0.354866058 0.871600091 1305031542.411900 1.3505 0.2952 1.4404 0.6799 0.5906 -0.2506 -0.3552
1305031542.443447 -0.404124826 0.341011167 -0.383656174 -0.045281854 -0.334990025 -0.354143351 0.871959686 1305031542.441900 1.3488 0.3069 1.4373 0.6824 0.5896 -0.2514 -0.3515
1305031542.475446 -0.403634161 0.334733367 -0.372643679 -0.047720112 -0.337274373 -0.350050062 0.872601748 1305031542.472000 1.3475 0.3197 1.4350 0.6835 0.5875 -0.2562 -0.3493
1305031542.507447 -0.394757181 0.325962037 -0.359337598 -0.052720807 -0.342367411 -0.343163341 0.873065889 1305031542.512000 1.3458 0.3387 1.4320 0.6877 0.5825 -0.2638 -0.3438
1305031542.543425 -0.390175700 0.312180579 -0.342721224 -0.057851780 -0.344812423 -0.339006186 0.873402774 1305031542.541900 1.3453 0.3536 1.4307 0.6905 0.5796 -0.2661 -0.3414
1305031542.575428 -0.385862857 0.301176876 -0.327610254 -0.058141515 -0.346854627 -0.332652450 0.875016451 1305031542.571900 1.3449 0.3691 1.4300 0.6915 0.5754 -0.2709 -0.3426
1305031542.607410 -0.377492547 0.297793597 -0.318756253 -0.057338268 -0.347587913 -0.324547470 0.877817690 1305031542.611900 1.3445 0.3906 1.4292 0.6963 0.5695 -0.2761 -0.3385
1305031542.643424 -0.372652501 0.283344835 -0.301862925 -0.062635101 -0.350192577 -0.318132073 0.878768444 1305031542.641900 1.3445 0.4070 1.4287 0.6988 0.5653 -0.2806 -0.3366
1305031542.675341 -0.364527047 0.271253467 -0.286560416 -0.062878616 -0.353189439 -0.312735736 0.879488409 1305031542.671900 1.3442 0.4233 1.4284 0.6990 0.5629 -0.2845 -0.3371
1305031542.707362 -0.353746861 0.264267653 -0.272547007 -0.060545847 -0.355426461 -0.311565638 0.879166126 1305031542.711900 1.3436 0.4450 1.4272 0.6987 0.5624 -0.2860 -0.3372
1305031542.743855 -0.346402407 0.256267458 -0.256006896 -0.062450703 -0.354297131 -0.311043948 0.879673302 1305031542.742000 1.3429 0.4616 1.4256 0.7008 0.5616 -0.2842 -0.3358
1305031542.775624 -0.344588816 0.246799707 -0.243490085 -0.063671924 -0.352105588 -0.311059147 0.880459964 1305031542.771900 1.3421 0.4779 1.4242 0.7010 0.5619 -0.2834 -0.3356
1305031542.807676 -0.335350066 0.238511503 -0.229203150 -0.063042670 -0.356522799 -0.312471300 0.878224790 1305031542.811900 1.3403 0.4996 1.4216 0.6987 0.5647 -0.2862 -0.3331
1305031542.843453 -0.326707274 0.233309925 -0.211559623 -0.065665394 -0.356796116 -0.312229693 0.878007531 1305031542.841900 1.3384 0.5163 1.4187 0.7007 0.5652 -0.2839 -0.3300
1305031542.875473 -0.323164761 0.221852824 -0.193995237 -0.070181124 -0.354449481 -0.313619405 0.878113329 1305031542.871900 1.3364 0.5329 1.4160 0.7024 0.5661 -0.2807 -0.3277
1305031542.907374 -0.318068862 0.219053492 -0.179003447 -0.071405590 -0.352604121 -0.314504623 0.878440917 1305031542.911900 1.3331 0.5555 1.4116 0.7039 0.5686 -0.2773 -0.3231
1305031542.943449 -0.318757027 0.207685515 -0.162913054 -0.077429734 -0.352007478 -0.316925675 0.877298951 1305031542.942000 1.3303 0.5724 1.4082 0.7032 0.5709 -0.2780 -0.3200
1305031542.975416 -0.315776467 0.203135580 -0.149030745 -0.079410113 -0.355449170 -0.315736681 0.876162231 1305031542.971900 1.3272 0.5894 1.4047 0.7024 0.5721 -0.2822 -0.3156
1305031543.007462 -0.309477985 0.192279816 -0.131644592 -0.086203486 -0.360369563 -0.314027131 0.874122262 1305031543.011900 1.3226 0.6123 1.3996 0.7042 0.5727 -0.2859 -0.3073
1305031543.043546 -0.307777882 0.182194531 -0.114005469 -0.091520697 -0.364526123 -0.311982661 0.872588933 1305031543.041900 1.3190 0.6300 1.3960 0.7037 0.5730 -0.2909 -0.3031
1305031543.075465 -0.299102157 0.180383444 -0.096430123 -0.093303628 -0.369791448 -0.310183823 0.870824158 1305031543.071900 1.3156 0.6475 1.3922 0.7044 0.5749 -0.2929 -0.2960
1305031543.107471 -0.294490695 0.169621021 -0.076127380 -0.100951150 -0.372357696 -0.311211109 0.868508041 1305031543.111900 1.3109 0.6709 1.3866 0.7052 0.5775 -0.2929 -0.2888
1305031543.143424 -0.287602007 0.162698746 -0.055746734 -0.104801372 -0.373374522 -0.311715305 0.867433965 1305031543.141900 1.3084 0.6883 1.3825 0.7071 0.5786 -0.2901 -0.2847
1305031543.175587 -0.288115889 0.151501611 -0.040364236 -0.111319453 -0.372138530 -0.311352611 0.867283404 1305031543.171900 1.3055 0.7053 1.3788 0.7081 0.5778 -0.2921 -0.2817
1305031543.207464 -0.285125196 0.142787576 -0.023474783 -0.116373152 -0.374066591 -0.304745167 0.868137002 1305031543.211900 1.3026 0.7271 1.3741 0.7121 0.5718 -0.2989 -0.2770
1305031543.243490 -0.279544979 0.134870753 -0.008680969 -0.121729761 -0.376168758 -0.295596749 0.869655967 1305031543.241900 1.3008 0.7419 1.3715 0.7169 0.5662 -0.3022 -0.2721
1305031543.275504 -0.278696120 0.122682326 0.006043896 -0.125385046 -0.378145844 -0.288579822 0.870635390 1305031543.271900 1.2998 0.7552 1.3702 0.7187 0.5616 -0.3065 -0.2723
1305031543.307391 -0.275535464 0.115677312 0.013919055 -0.121051311 -0.380055547 -0.282517225 0.872403800 1305031543.311900 1.2984 0.7707 1.3697 0.7190 0.5555 -0.3142 -0.2750
1305031543.343502 -0.270777464 0.109688058 0.021745622 -0.119693056 -0.382207274 -0.276879609 0.873458028 1305031543.341900 1.2973 0.7800 1.3700 0.7191 0.5536 -0.3176 -0.2748
1305031543.375520 -0.270705104 0.102580138 0.029289700 -0.115418971 -0.384918839 -0.274117768 0.873713613 1305031543.371900 1.2966 0.7871 1.3715 0.7164 0.5516 -0.3219 -0.2809
1305031543.407575 -0.267575443 0.097084746 0.027959868 -0.106948346 -0.388834625 -0.274958462 0.872792959 1305031543.411900 1.2965 0.7937 1.3747 0.7109 0.5526 -0.3282 -0.2857
1305031543.443593 -0.266326696 0.094670720 0.031300642 -0.101474606 -0.392735720 -0.272365808 0.872512698 1305031543.441900 1.2965 0.7972 1.3777 0.7085 0.5516 -0.3317 -0.2893
1305031543.475420 -0.266954094 0.092706189 0.027764328 -0.096696243 -0.394145280 -0.270932913 0.872865796 1305031543.471900 1.2966 0.7989 1.3812 0.7067 0.5514 -0.3342 -0.2913
1305031543.507652 -0.268664479 0.089310542 0.022025108 -0.091523401 -0.398923188 -0.273518682 0.870443165 1305031543.511900 1.2968 0.7975 1.3873 0.6984 0.5569 -0.3394 -0.2947
1305031543.543433 -0.269024968 0.089103296 0.018347234 -0.083973564 -0.406250417 -0.276284397 0.866934836 1305031543.541900 1.2966 0.7946 1.3924 0.6927 0.5590 -0.3449 -0.2977
1305031543.575393 -0.272264838 0.084976293 0.006652027 -0.081298038 -0.407118440 -0.278267056 0.866148174 1305031543.572000 1.2969 0.7903 1.3983 0.6907 0.5609 -0.3453 -0.2987
1305031543.607524 -0.273583293 0.088238321 -0.006190896 -0.073862337 -0.413400948 -0.283279240 0.862204671 1305031543.611900 1.2974 0.7811 1.4079 0.6815 0.5687 -0.3498 -0.2996
1305031543.643400 -0.274819702 0.087575451 -0.017467752 -0.073593996 -0.421032637 -0.290219307 0.856205702 1305031543.641900 1.2976 0.7729 1.4157 0.6766 0.5761 -0.3508 -0.2955
1305031543.675460 -0.283944964 0.075257987 -0.024313733 -0.077054374 -0.423907310 -0.292540878 0.853689075 1305031543.671900 1.2983 0.7641 1.4253 0.6750 0.5767 -0.3514 -0.2973
1305031543.707478 -0.285617232 0.078773037 -0.044996388 -0.069526933 -0.425292283 -0.293291211 0.853388965 1305031543.711900 1.3000 0.7514 1.4396 0.6712 0.5789 -0.3535 -0.2989
1305031543.743399 -0.290411681 0.070487298 -0.059867173 -0.071940705 -0.427491963 -0.294267029 0.851752341 1305031543.741900 1.3019 0.7414 1.4510 0.6704 0.5802 -0.3539 -0.2977
1305031543.775642 -0.299001962 0.065866627 -0.079121582 -0.071173035 -0.427976519 -0.290926903 0.852720380 1305031543.771900 1.3042 0.7314 1.4634 0.6701 0.5779 -0.3578 -0.2982
1305031543.807514 -0.296621680 0.066284850 -0.098357804 -0.068959005 -0.432908356 -0.285731196 0.852169394 1305031543.811900 1.3080 0.7171 1.4809 0.6707 0.5763 -0.3626 -0.2942
1305031543.843406 -0.296747863 0.062226355 -0.113215216 -0.076137938 -0.436597973 -0.281338006 0.851136982 1305031543.841900 1.3111 0.7060 1.4943 0.6736 0.5759 -0.3636 -0.2871
1305031543.875410 -0.300884902 0.051956873 -0.132826954 -0.084455349 -0.436254531 -0.276948184 0.851967692 1305031543.872000 1.3139 0.6949 1.5090 0.6771 0.5711 -0.3665 -0.2847
1305031543.907459 -0.301354080 0.046674702 -0.154025316 -0.091074541 -0.433179557 -0.271596968 0.854573548 1305031543.911900 1.3193 0.6790 1.5294 0.6852 0.5655 -0.3646 -0.2789
1305031543.943413 -0.304859430 0.036069367 -0.175080150 -0.096589267 -0.428909540 -0.270053446 0.856608570 1305031543.941900 1.3243 0.6660 1.5454 0.6902 0.5620 -0.3615 -0.2777
1305031543.975473 -0.304603577 0.034261424 -0.195808202 -0.095606022 -0.422259301 -0.267113984 0.860933602 1305031543.971900 1.3292 0.6525 1.5618 0.6950 0.5574 -0.3573 -0.2804
1305031544.007491 -0.305454671 0.024016218 -0.210849881 -0.095741577 -0.413700283 -0.264114767 0.865984440 1305031544.011900 1.3364 0.6334 1.5838 0.7028 0.5498 -0.3479 -0.2876
1305031544.043491 -0.304375231 0.023814803 -0.235578492 -0.087401703 -0.401473552 -0.262908906 0.872959793 1305031544.041900 1.3422 0.6177 1.5998 0.7082 0.5428 -0.3395 -0.2975
1305031544.075509 -0.300689042 0.019608490 -0.261212081 -0.085254215 -0.385713667 -0.259903818 0.881139398 1305031544.072000 1.3484 0.6009 1.6150 0.7169 0.5359 -0.3265 -0.3036
1305031544.107376 -0.317919135 0.016743053 -0.289642811 -0.082478665 -0.366847247 -0.256464720 0.890419126 1305031544.111900 1.3557 0.5766 1.6342 0.7245 0.5236 -0.3169 -0.3171
1305031544.143795 -0.324295074 0.019759245 -0.322530866 -0.073405445 -0.356160849 -0.250692368 0.897170246 1305031544.141900 1.3607 0.5567 1.6478 0.7269 0.5160 -0.3148 -0.3260
1305031544.175829 -0.324815214 0.023322778 -0.343147814 -0.068514116 -0.349458575 -0.246429399 0.901364028 1305031544.171900 1.3651 0.5358 1.6600 0.7316 0.5085 -0.3098 -0.3319
1305031544.207354 -0.329174995 0.030234622 -0.368449211 -0.058111545 -0.337862134 -0.241583973 0.907804728 1305031544.211900 1.3693 0.5064 1.6750 0.7352 0.4980 -0.3021 -0.3468
1305031544.243427 -0.336355329 0.033016339 -0.396227747 -0.052916579 -0.323711187 -0.239683941 0.913762808 1305031544.241900 1.3715 0.4833 1.6849 0.7395 0.4917 -0.2925 -0.3549
1305031544.275540 -0.343856066 0.039289251 -0.421105713 -0.044939667 -0.310175747 -0.240548566 0.918644547 1305031544.271900 1.3724 0.4600 1.6936 0.7419 0.4853 -0.2835 -0.3657
1305031544.307370 -0.355993450 0.046420101 -0.449878693 -0.036598992 -0.294612706 -0.243024722 0.923473239 1305031544.311900 1.3722 0.4277 1.7040 0.7436 0.4802 -0.2689 -0.3796
1305031544.343409 -0.368704796 0.063350350 -0.478535116 -0.028410932 -0.281191975 -0.243924946 0.927698493 1305031544.341900 1.3709 0.4032 1.7106 0.7454 0.4765 -0.2599 -0.3871
1305031544.375459 -0.368742347 0.086126313 -0.500607371 -0.024489028 -0.271766871 -0.243664071 0.930683017 1305031544.371900 1.3682 0.3787 1.7155 0.7491 0.4749 -0.2487 -0.3891
1305031544.407333 -0.386473179 0.101559266 -0.523383975 -0.032002628 -0.256417006 -0.249294788 0.933315694 1305031544.411900 1.3631 0.3462 1.7196 0.7572 0.4753 -0.2295 -0.3847
1305031544.443375 -0.411196500 0.106993064 -0.548486829 -0.038752977 -0.244761363 -0.252791226 0.935246825 1305031544.441900 1.3580 0.3223 1.7223 0.7604 0.4735 -0.2232 -0.3845
1305031544.475427 -0.429425418 0.129836947 -0.569288135 -0.042069707 -0.237990290 -0.253428698 0.936677456 1305031544.471900 1.3528 0.2990 1.7240 0.7645 0.4739 -0.2176 -0.3789
1305031544.507367 -0.454278678 0.136183143 -0.592136860 -0.049748566 -0.233560741 -0.257886082 0.936199367 1305031544.511900 1.3442 0.2686 1.7249 0.7655 0.4780 -0.2137 -0.3740
1305031544.543416 -0.471503198 0.145754129 -0.604286253 -0.053384677 -0.235379428 -0.263114512 0.934086382 1305031544.541900 1.3373 0.2463 1.7246 0.7643 0.4826 -0.2124 -0.3713
1305031544.575497 -0.491918504 0.157886207 -0.620600939 -0.055013023 -0.236884102 -0.266385943 0.932683229 1305031544.572000 1.3302 0.2256 1.7240 0.7627 0.4849 -0.2140 -0.3707
1305031544.607409 -0.492971331 0.186167926 -0.628353238 -0.054139860 -0.242452458 -0.266085178 0.931388378 1305031544.611900 1.3208 0.1993 1.7204 0.7648 0.4884 -0.2132 -0.3619
1305031544.643444 -0.513085365 0.201456696 -0.641210318 -0.063923694 -0.242532894 -0.269478589 0.929770291 1305031544.641900 1.3139 0.1813 1.7164 0.7670 0.4915 -0.2124 -0.3535
1305031544.675586 -0.534213245 0.201238692 -0.645255029 -0.073967092 -0.246619403 -0.271029979 0.927496910 1305031544.671900 1.3064 0.1642 1.7122 0.7657 0.4941 -0.2160 -0.3507
1305031544.707411 -0.544306457 0.220080435 -0.655365169 -0.075432129 -0.252025604 -0.270833611 0.925981760 1305031544.711900 1.2961 0.1430 1.7063 0.7660 0.4969 -0.2198 -0.3436
1305031544.743438 -0.562201917 0.224313498 -0.650126040 -0.081562661 -0.257548928 -0.272314548 0.923504651 1305031544.741800 1.2879 0.1281 1.7021 0.7657 0.4983 -0.2211 -0.3415
1305031544.775418 -0.578908205 0.226531059 -0.652922392 -0.080338687 -0.258810461 -0.274994016 0.922464728 1305031544.771900 1.2789 0.1140 1.6982 0.7626 0.4997 -0.2222 -0.3456
1305031544.807397 -0.589655757 0.241582394 -0.657069623 -0.074771427 -0.259807259 -0.275206625 0.922589123 1305031544.811900 1.2656 0.0966 1.6927 0.7606 0.4994 -0.2230 -0.3498
1305031544.843491 -0.600756228 0.267329633 -0.661785126 -0.071265124 -0.258782744 -0.274994791 0.923217595 1305031544.841900 1.2548 0.0838 1.6881 0.7618 0.5007 -0.2206 -0.3469
1305031544.875360 -0.619798541 0.273174316 -0.661072552 -0.078293219 -0.258119017 -0.279608339 0.921446681 1305031544.871900 1.2430 0.0717 1.6833 0.7626 0.5038 -0.2177 -0.3424
1305031544.907423 -0.633472681 0.281817645 -0.661757767 -0.078774795 -0.255797535 -0.284950346 0.920415938 1305031544.911900 1.2256 0.0562 1.6777 0.7621 0.5071 -0.2115 -0.3425
1305031544.943434 -0.648813248 0.286098093 -0.663860857 -0.081837185 -0.249574944 -0.291249216 0.919885278 1305031544.941900 1.2126 0.0454 1.6740 0.7629 0.5110 -0.2005 -0.3414
1305031544.975537 -0.670217812 0.298842609 -0.664374352 -0.083941147 -0.243787631 -0.297039866 0.919395924 1305031544.972000 1.1990 0.0351 1.6708 0.7635 0.5141 -0.1943 -0.3392
1305031545.007393 -0.687064171 0.296892703 -0.659550846 -0.090034373 -0.243516088 -0.295614034 0.919350922 1305031545.011900 1.1809 0.0229 1.6677 0.7663 0.5117 -0.1935 -0.3370
1305031545.043477 -0.711464643 0.297131598 -0.658662319 -0.092653722 -0.236954123 -0.295556784 0.920822561 1305031545.041900 1.1674 0.0146 1.6664 0.7693 0.5078 -0.1901 -0.3380
1305031545.075369 -0.728638768 0.298035920 -0.656510949 -0.089636192 -0.231901944 -0.291602463 0.923663795 1305031545.071900 1.1540 0.0071 1.6657 0.7706 0.5030 -0.1884 -0.3432
1305031545.107399 -0.740667582 0.305239290 -0.656977296 -0.087092735 -0.226422921 -0.283308268 0.927838326 1305031545.111800 1.1366 -0.0018 1.6643 0.7760 0.4931 -0.1869 -0.3460
1305031545.144171 -0.753568053 0.307678342 -0.656219363 -0.087508567 -0.219255596 -0.272199452 0.932832599 1305031545.141900 1.1240 -0.0077 1.6631 0.7832 0.4811 -0.1852 -0.3478
1305031545.175406 -0.760825276 0.307560235 -0.655331135 -0.088254862 -0.212509319 -0.260688752 0.937599182 1305031545.171900 1.1118 -0.0131 1.6618 0.7908 0.4688 -0.1825 -0.3487
1305031545.207577 -0.775697052 0.309703827 -0.652532101 -0.088994205 -0.202878073 -0.249244258 0.942760706 1305031545.211900 1.0958 -0.0197 1.6598 0.8003 0.4518 -0.1791 -0.3512
1305031545.243483 -0.797005057 0.306024313 -0.648830235 -0.087164439 -0.193672433 -0.236978650 0.948016047 1305031545.241900 1.0840 -0.0244 1.6586 0.8039 0.4399 -0.1802 -0.3575
1305031545.275369 -0.810988188 0.315814793 -0.651436388 -0.079260267 -0.187154412 -0.225204751 0.952876627 1305031545.271900 1.0720 -0.0295 1.6570 0.8074 0.4285 -0.1815 -0.3627
1305031545.307451 -0.823681235 0.322350562 -0.648727357 -0.077548370 -0.181697726 -0.214869916 0.956453383 1305031545.311900 1.0555 -0.0362 1.6542 0.8136 0.4157 -0.1814 -0.3639
1305031545.343494 -0.836157501 0.317787945 -0.643813252 -0.078742526 -0.176498756 -0.204849318 0.959523082 1305031545.341900 1.0428 -0.0413 1.6526 0.8176 0.4052 -0.1804 -0.3672
1305031545.375545 -0.853310347 0.316042989 -0.639135301 -0.076436408 -0.169007257 -0.192925304 0.963521600 1305031545.371900 1.0304 -0.0461 1.6518 0.8221 0.3933 -0.1796 -0.3704
1305031545.407452 -0.874697745 0.317640305 -0.637432337 -0.070468687 -0.162589818 -0.181952596 0.967208326 1305031545.411800 1.0135 -0.0520 1.6512 0.8248 0.3782 -0.1836 -0.3782
1305031545.444180 -0.886911452 0.313298106 -0.639686942 -0.065004595 -0.160660192 -0.171101630 0.969890177 1305031545.441900 1.0009 -0.0561 1.6513 0.8255 0.3699 -0.1863 -0.3833
1305031545.475423 -0.905291140 0.296409756 -0.633331060 -0.059877038 -0.158485740 -0.160531029 0.972382009 1305031545.471900 0.9886 -0.0599 1.6519 0.8240 0.3605 -0.1906 -0.3933
1305031545.507394 -0.915389955 0.310957670 -0.634614110 -0.038708638 -0.159511805 -0.152018532 0.974652767 1305031545.511800 0.9723 -0.0644 1.6526 0.8200 0.3498 -0.1985 -0.4074
1305031545.543418 -0.926781833 0.300550938 -0.631470203 -0.031722408 -0.162174836 -0.142174989 0.975950420 1305031545.541900 0.9601 -0.0678 1.6527 0.8167 0.3442 -0.2042 -0.4158
1305031545.578078 -0.941030085 0.302477956 -0.632803679 -0.016745908 -0.167308226 -0.140735641 0.975664377 1305031545.581900 0.9439 -0.0730 1.6521 0.8082 0.3439 -0.2128 -0.4281
1305031545.607417 -0.958786428 0.309266388 -0.634283662 -0.005518550 -0.171974912 -0.140413284 0.975027323 1305031545.611900 0.9325 -0.0769 1.6505 0.8037 0.3440 -0.2194 -0.4332
1305031545.643463 -0.971941531 0.311215401 -0.625996351 0.005261570 -0.177367032 -0.140286848 0.974080563 1305031545.641900 0.9218 -0.0805 1.6486 0.7977 0.3433 -0.2254 -0.4416
1305031545.675289 -0.981105447 0.303551197 -0.618971765 0.016415834 -0.182207465 -0.142161235 0.972790360 1305031545.672100 0.9119 -0.0847 1.6461 0.7911 0.3435 -0.2278 -0.4519
1305031545.707398 -0.985777617 0.319570988 -0.616668284 0.035953835 -0.185696319 -0.143202424 0.971451104 1305031545.711900 0.8989 -0.0892 1.6410 0.7817 0.3420 -0.2318 -0.4671
1305031545.743570 -0.994036734 0.339825362 -0.619215250 0.043110058 -0.184341520 -0.143804520 0.971328974 1305031545.742000 0.8891 -0.0927 1.6349 0.7817 0.3417 -0.2316 -0.4675
1305031545.775452 -1.008792162 0.348843127 -0.617261469 0.043981537 -0.185309321 -0.148192868 0.970445752 1305031545.771800 0.8794 -0.0964 1.6277 0.7799 0.3451 -0.2323 -0.4676
1305031545.807404 -1.017094016 0.363836795 -0.610341728 0.042971130 -0.187454849 -0.149913028 0.969814539 1305031545.811800 0.8668 -0.1017 1.6162 0.7805 0.3491 -0.2321 -0.4637
1305031545.843376 -1.015746951 0.384224027 -0.597564757 0.040337745 -0.189155236 -0.149123102 0.969719291 1305031545.841900 0.8581 -0.1055 1.6063 0.7837 0.3502 -0.2290 -0.4591
1305031545.875537 -1.020460725 0.393541723 -0.591298938 0.030206559 -0.183203965 -0.150770113 0.970974863 1305031545.871900 0.8502 -0.1090 1.5954 0.7891 0.3506 -0.2217 -0.4530
1305031545.907389 -1.032172799 0.404498816 -0.585110068 0.022949532 -0.175226331 -0.154789075 0.972013056 1305031545.911800 0.8410 -0.1147 1.5804 0.7946 0.3515 -0.2115 -0.4476
1305031545.943457 -1.029512048 0.419103324 -0.581444979 0.011849710 -0.171430603 -0.157338798 0.972479105 1305031545.941900 0.8355 -0.1192 1.5682 0.8008 0.3528 -0.2037 -0.4391
1305031545.975621 -1.034663200 0.428941101 -0.573612571 -0.000687468 -0.164707407 -0.157783851 0.973640203 1305031545.971900 0.8312 -0.1237 1.5559 0.8077 0.3512 -0.1960 -0.4311
1305031546.007516 -1.042177558 0.450212479 -0.575800180 -0.009769781 -0.157327563 -0.160005048 0.974449039 1305031546.011900 0.8267 -0.1296 1.5391 0.8153 0.3516 -0.1884 -0.4197
1305031546.043769 -1.036182284 0.464607954 -0.563580990 -0.025006190 -0.152651861 -0.160986036 0.974759221 1305031546.041900 0.8255 -0.1338 1.5263 0.8240 0.3493 -0.1785 -0.4088
1305031546.075414 -1.033570170 0.477972031 -0.557384670 -0.039435860 -0.140094146 -0.159591570 0.976395905 1305031546.071900 0.8256 -0.1378 1.5139 0.8335 0.3441 -0.1655 -0.3993
1305031546.107395 -1.029393673 0.492431819 -0.554459393 -0.047873456 -0.130461067 -0.158340931 0.977556229 1305031546.111900 0.8271 -0.1420 1.4985 0.8408 0.3395 -0.1539 -0.3926
1305031546.143502 -1.028340936 0.505542159 -0.552153826 -0.055414032 -0.118261471 -0.155959934 0.979091406 1305031546.141900 0.8294 -0.1445 1.4875 0.8475 0.3329 -0.1451 -0.3871
1305031546.175952 -1.030930519 0.508714318 -0.546573281 -0.067375802 -0.107248776 -0.147529036 0.980914533 1305031546.172000 0.8322 -0.1466 1.4764 0.8531 0.3277 -0.1387 -0.3816
1305031546.207500 -1.024528623 0.517454207 -0.542282641 -0.077759199 -0.098568663 -0.142390266 0.981816053 1305031546.212000 0.8371 -0.1484 1.4616 0.8619 0.3168 -0.1294 -0.3742
1305031546.243551 -1.023211718 0.520915508 -0.536803424 -0.084928177 -0.086161926 -0.136442930 0.983232796 1305031546.242000 0.8413 -0.1490 1.4509 0.8664 0.3073 -0.1231 -0.3738
1305031546.276098 -1.018564939 0.539996207 -0.534515381 -0.082185738 -0.075569794 -0.128385767 0.985419631 1305031546.272000 0.8462 -0.1496 1.4395 0.8698 0.2977 -0.1193 -0.3749
1305031546.308110 -1.010900617 0.550528944 -0.528959513 -0.090218984 -0.066594698 -0.117502101 0.986721337 1305031546.312000 0.8532 -0.1506 1.4240 0.8787 0.2832 -0.1123 -0.3675
1305031546.343919 -1.014521241 0.556670666 -0.524246275 -0.094354831 -0.053942565 -0.109825686 0.987990737 1305031546.342000 0.8582 -0.1509 1.4127 0.8815 0.2737 -0.1105 -0.3686
1305031546.376056 -1.012071252 0.569871247 -0.519335747 -0.092766643 -0.048395433 -0.101247221 0.989343882 1305031546.372100 0.8629 -0.1514 1.4014 0.8843 0.2649 -0.1117 -0.3680
1305031546.407659 -1.003891230 0.578038037 -0.514469981 -0.095107846 -0.046558440 -0.090958118 0.990208805 1305031546.412100 0.8684 -0.1517 1.3859 0.8880 0.2543 -0.1127 -0.3662
1305031546.443968 -1.006876349 0.587401628 -0.507140934 -0.093904831 -0.041006159 -0.084594145 0.991132796 1305031546.442100 0.8721 -0.1523 1.3745 0.8884 0.2476 -0.1156 -0.3689
1305031546.475996 -0.996109128 0.606940567 -0.504759967 -0.092348449 -0.041479517 -0.078999028 0.991720915 1305031546.472100 0.8752 -0.1531 1.3625 0.8915 0.2427 -0.1146 -0.3650
1305031546.507967 -0.994153321 0.611241043 -0.496860325 -0.097532190 -0.037081897 -0.074150644 0.991773188 1305031546.512100 0.8793 -0.1544 1.3475 0.8932 0.2362 -0.1136 -0.3653
1305031546.544068 -0.989314735 0.627403915 -0.493148655 -0.093061380 -0.035366114 -0.069693960 0.992588341 1305031546.542100 0.8817 -0.1557 1.3363 0.8938 0.2319 -0.1144 -0.3665
1305031546.576412 -0.987078428 0.637881339 -0.490572333 -0.098057151 -0.031207165 -0.065670043 0.992521226 1305031546.572100 0.8844 -0.1572 1.3254 0.8968 0.2294 -0.1110 -0.3617
1305031546.607717 -0.985495627 0.648996294 -0.485175341 -0.104153536 -0.028164549 -0.062237393 0.992212296 1305031546.612100 0.8871 -0.1587 1.3107 0.9011 0.2245 -0.1093 -0.3545
1305031546.644200 -0.980976045 0.661606312 -0.480350435 -0.109906785 -0.025553485 -0.059289202 0.991842866 1305031546.642200 0.8890 -0.1594 1.3001 0.9047 0.2220 -0.1058 -0.3478
1305031546.676003 -0.979658186 0.668606997 -0.473185062 -0.117995255 -0.021227345 -0.058345407 0.991071284 1305031546.672200 0.8903 -0.1596 1.2899 0.9069 0.2203 -0.1025 -0.3443
1305031546.707934 -0.974887013 0.675395727 -0.468508154 -0.124167100 -0.018283943 -0.056145288 0.990502834 1305031546.712200 0.8922 -0.1592 1.2775 0.9106 0.2168 -0.0967 -0.3383
1305031546.743887 -0.973686397 0.685157299 -0.463010907 -0.131787583 -0.011771018 -0.056698982 0.989585102 1305031546.742200 0.8929 -0.1587 1.2684 0.9146 0.2162 -0.0902 -0.3295
1305031546.775864 -0.975636601 0.691571474 -0.455485851 -0.140392944 -0.006230631 -0.058326945 0.988356709 1305031546.772300 0.8931 -0.1577 1.2604 0.9164 0.2172 -0.0867 -0.3248
1305031546.807996 -0.973160028 0.695711017 -0.449681729 -0.144233882 -0.004771988 -0.058515519 0.987800479 1305031546.812200 0.8929 -0.1559 1.2513 0.9175 0.2168 -0.0842 -0.3226
1305031546.844079 -0.972163498 0.700159490 -0.445479959 -0.147190124 -0.005115082 -0.057700932 0.987410486 1305031546.842300 0.8927 -0.1550 1.2453 0.9185 0.2175 -0.0850 -0.3192
1305031546.876064 -0.970690489 0.699782610 -0.439850301 -0.151563972 -0.008172899 -0.059012938 0.986650407 1305031546.872400 0.8921 -0.1538 1.2403 0.9181 0.2194 -0.0860 -0.3186
1305031546.907783 -0.970115304 0.699011922 -0.434674412 -0.150987342 -0.008861817 -0.060312528 0.986654282 1305031546.912300 0.8911 -0.1521 1.2352 0.9162 0.2204 -0.0864 -0.3234
1305031546.943858 -0.971781909 0.705614865 -0.432511747 -0.144331127 -0.008444622 -0.062622145 0.987509847 1305031546.942300 0.8902 -0.1509 1.2318 0.9147 0.2226 -0.0870 -0.3260
1305031546.975884 -0.973060191 0.706883013 -0.429386258 -0.145612717 -0.009609468 -0.064460464 0.987192690 1305031546.972400 0.8890 -0.1500 1.2285 0.9145 0.2257 -0.0872 -0.3243
1305031547.011984 -0.973977268 0.705084682 -0.425893694 -0.146080330 -0.012293681 -0.067066759 0.986920178 1305031547.012300 0.8877 -0.1485 1.2255 0.9126 0.2275 -0.0902 -0.3277
1305031547.044214 -0.969248772 0.709507227 -0.423717022 -0.141931981 -0.015329896 -0.068335988 0.987395823 1305031547.042400 0.8873 -0.1475 1.2236 0.9123 0.2285 -0.0884 -0.3281
1305031547.076346 -0.969141841 0.705416739 -0.420951128 -0.142568424 -0.012756718 -0.071352549 0.987127304 1305031547.072400 0.8874 -0.1462 1.2227 0.9111 0.2290 -0.0858 -0.3317
1305031547.111991 -0.969205260 0.702976882 -0.420145452 -0.139350116 -0.010200501 -0.072448380 0.987536669 1305031547.112400 0.8877 -0.1451 1.2227 0.9096 0.2288 -0.0838 -0.3366
1305031547.144071 -0.970228970 0.703889012 -0.420595855 -0.133380279 -0.007748643 -0.073243111 0.988324404 1305031547.142400 0.8881 -0.1447 1.2234 0.9081 0.2285 -0.0838 -0.3406
1305031547.175909 -0.971397400 0.704943478 -0.422101766 -0.130354390 -0.007599273 -0.070975937 0.988894522 1305031547.172400 0.8885 -0.1447 1.2248 0.9074 0.2278 -0.0862 -0.3423
1305031547.211964 -0.972041070 0.701468408 -0.422861338 -0.130787611 -0.010874991 -0.070190683 0.988862753 1305031547.212400 0.8893 -0.1450 1.2272 0.9068 0.2285 -0.0906 -0.3425
1305031547.244113 -0.971181035 0.695812881 -0.424771667 -0.130435303 -0.013295597 -0.070769772 0.988838434 1305031547.242500 0.8899 -0.1451 1.2297 0.9055 0.2287 -0.0919 -0.3453
1305031547.276546 -0.971028864 0.697565377 -0.427125096 -0.125065759 -0.014118688 -0.071175680 0.989491403 1305031547.272500 0.8904 -0.1455 1.2320 0.9043 0.2296 -0.0927 -0.3479
1305031547.312261 -0.971129596 0.694582820 -0.428963840 -0.124308571 -0.015723296 -0.071646489 0.989528596 1305031547.312500 0.8912 -0.1463 1.2354 0.9036 0.2304 -0.0946 -0.3487
1305031547.344192 -0.971808732 0.696023524 -0.431559682 -0.120676666 -0.017302411 -0.070783302 0.990013897 1305031547.342500 0.8917 -0.1467 1.2377 0.9026 0.2307 -0.0972 -0.3503
1305031547.376753 -0.972948790 0.692880690 -0.433144748 -0.121699139 -0.020406267 -0.069425315 0.989925742 1305031547.372600 0.8921 -0.1474 1.2396 0.9027 0.2312 -0.1007 -0.3487
1305031547.412260 -0.971561193 0.691772044 -0.434226394 -0.120271191 -0.024528606 -0.067930862 0.990110397 1305031547.412500 0.8920 -0.1477 1.2420 0.9020 0.2318 -0.1040 -0.3490
1305031547.444472 -0.969606876 0.689487159 -0.435226619 -0.119148292 -0.027779723 -0.068744808 0.990104079 1305031547.442600 0.8921 -0.1475 1.2435 0.9008 0.2327 -0.1053 -0.3511
1305031547.476347 -0.970041931 0.689112425 -0.436202466 -0.115484737 -0.028181925 -0.070158444 0.990427613 1305031547.472600 0.8922 -0.1473 1.2447 0.8999 0.2332 -0.1058 -0.3530
1305031547.512114 -0.969141722 0.690587997 -0.436644912 -0.112998858 -0.028315512 -0.070585296 0.990680158 1305031547.512600 0.8920 -0.1464 1.2457 0.8999 0.2336 -0.1049 -0.3529
1305031547.544015 -0.969343126 0.685919464 -0.435732603 -0.115559071 -0.027669447 -0.071633816 0.990327775 1305031547.542600 0.8918 -0.1458 1.2463 0.8997 0.2338 -0.1044 -0.3535
1305031547.576437 -0.969174564 0.686703444 -0.435318053 -0.112849854 -0.027105195 -0.070552461 0.990733325 1305031547.572800 0.8918 -0.1446 1.2464 0.8993 0.2324 -0.1049 -0.3553
1305031547.612296 -0.970078647 0.689395785 -0.435169339 -0.112708598 -0.026355622 -0.070317492 0.990786374 1305031547.612600 0.8919 -0.1431 1.2459 0.9003 0.2329 -0.1051 -0.3523
1305031547.644160 -0.968304217 0.684383154 -0.432779491 -0.115552612 -0.027641958 -0.069583893 0.990475416 1305031547.642700 0.8920 -0.1419 1.2458 0.8996 0.2314 -0.1062 -0.3549
1305031547.677287 -0.966275394 0.690610170 -0.433439136 -0.111170650 -0.027089374 -0.068664201 0.991056204 1305031547.672700 0.8922 -0.1407 1.2451 0.9005 0.2309 -0.1046 -0.3533
1305031547.712338 -0.964709222 0.686679959 -0.430968702 -0.118181951 -0.026665349 -0.069269933 0.990213931 1305031547.712700 0.8925 -0.1396 1.2441 0.9020 0.2315 -0.1028 -0.3497
1305031547.744332 -0.963581026 0.684470177 -0.429666400 -0.117340922 -0.025876738 -0.069295891 0.990333080 1305031547.742800 0.8929 -0.1386 1.2441 0.9011 0.2307 -0.1025 -0.3526
1305031547.776390 -0.964229822 0.688230872 -0.429996789 -0.114284322 -0.024022026 -0.070344165 0.990663290 1305031547.772700 0.8935 -0.1379 1.2440 0.9008 0.2318 -0.1015 -0.3529
1305031547.812317 -0.964506626 0.684349477 -0.429410160 -0.117394648 -0.022055248 -0.071717598 0.990246713 1305031547.812700 0.8942 -0.1371 1.2441 0.9011 0.2310 -0.0996 -0.3532
1305031547.844564 -0.962979019 0.686277032 -0.429381162 -0.114744045 -0.021526016 -0.070772044 0.990637004 1305031547.842800 0.8946 -0.1365 1.2442 0.9008 0.2305 -0.0994 -0.3543
1305031547.876362 -0.963006616 0.688939631 -0.429479182 -0.113952808 -0.021306587 -0.070929334 0.990721881 1305031547.872800 0.8950 -0.1360 1.2442 0.9016 0.2311 -0.0993 -0.3520
1305031547.912744 -0.960898936 0.685296535 -0.428291798 -0.116005875 -0.021983700 -0.069795489 0.990549266 1305031547.912800 0.8956 -0.1352 1.2445 0.9016 0.2297 -0.0992 -0.3529
1305031547.944304 -0.960632503 0.685537279 -0.428972363 -0.115375742 -0.021099383 -0.069957919 0.990630627 1305031547.943100 0.8959 -0.1347 1.2447 0.9019 0.2297 -0.0988 -0.3522

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)

project(E2RT)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE "Release")

#添加头文件
include_directories( "/usr/include/eigen3")
find_package(Sophus REQUIRED)
find_package(Pangolin REQUIRED)
find_package(OpenCV REQUIRED)
#添加头文件
include_directories( ${OpenCV_INCLUDE_DIRS})
include_directories(${Pangolin_INCLUDE_DIRS})
include_directories(${Sophus_INCLUDE_DIRS})


add_executable(useICP icp.cpp)

#链接OpenCV库
target_link_libraries(useICP ${Sophus_LIBRARIES} ${Pangolin_LIBRARIES} ${OpenCV_LIBS})

运行结果如下:
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第17张图片
自学SLAM(9)《第五讲:特征点法视觉里程计》作业_第18张图片

你可能感兴趣的:(视觉SLAM,视觉SLAM,计算机视觉)