图像分割网络FCN详解与代码实现

全卷积网络(FCN):

卷积神经网络从图像分类到到对象检测、实例分割、到图像语义分割、是卷积特征提取从粗糙输出到精炼输出的不断升级,基于卷积神经网络的全卷积分割网络FCN是像素级别的图像语义分割网络,相比以前传统的图像分割方法,基于卷积神经网络的分割更加的精准,适应性更强。

图像分割网络FCN详解与代码实现_第1张图片

上图是FCN网络像素级别的预测,支持每个像素点20个类别预测,多出来的一个类别是背景。要把一个正常的图像分类网络,转换为一个全卷积网络,就是要对图像分类网络的全连接层重新变为卷积操作,变成携带空间信息多个维度feature maps,图示如下:

图像分割网络FCN详解与代码实现_第2张图片

当网络转换为全卷积网络之后,对于正常的卷积输出是越来越小了,要实现密集层像素级别预测就需要多卷积输出进行上采样,在FCN网络作者的论文中,作者对如何上采样做了仔细的研究,主要的方法有三种:

-迁移与合并
-双线性插值上采样,对所有分类采用同一个filter,大小固定
-反向卷积(转置卷积),学习,在这个过程中,filters大小是可以设置的

FCN网络论文作者经过对比觉得最后一种方法计算更加精准,可以通过卷积学习插值系数,是一种更好的上采样方法,所以FCN最终采样是反向卷积实现上采样,完成像素级别预测。

上釆样方法:

迁移与合并的工作原理可以通过下面这张图来解释

图像分割网络FCN详解与代码实现_第3张图片

双线性插值比较low,大致看一张图就明白了:

图像分割网络FCN详解与代码实现_第4张图片

通过双线性插值获取filter的代码如下:

def get_deconv_filter(self, f_shape):
    width = f_shape[0]
    heigh = f_shape[0]
    f = ceil(width/2.0)
    c = (2 * f - 1 - f % 2) / (2.0 * f)
    bilinear = np.zeros([f_shape[0], f_shape[1]])
    for x in range(width):
        for y in range(heigh):
            value = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
            bilinear[x, y] = value
    weights = np.zeros(f_shape)
    for i in range(f_shape[2]):
        weights[:, :, i, i] = bilinear

    init = tf.constant_initializer(value=weights,
                                   dtype=tf.float32)
    var = tf.get_variable(name="up_filter", initializer=init,
                          shape=weights.shape)
    return var

反向卷积/转置卷积可以通过下面一张图表示如下:

图像分割网络FCN详解与代码实现_第5张图片

网络实现:

FCN的卷积网络部分可以采用VGG、GoogleNet、AlexNet等作为前置基础网络,在这些的预训练基础上进行迁移学习与finetuning,对反卷积的结果跟对应的正向feature map进行叠加输出(这样做的目的是得到更加准确的像素级别分割),根据上采样的倍数不一样分为FCN-8S、FCN-16S、FCN-32S,图示如下:

图像分割网络FCN详解与代码实现_第6张图片

效果对比如下:

图像分割网络FCN详解与代码实现_第7张图片

基于VGG-16实现tensorflow版本FCN网络模型代码如下

self.conv1_1 = self._conv_layer(bgr, "conv1_1")
self.conv1_2 = self._conv_layer(self.conv1_1, "conv1_2")
self.pool1 = self._max_pool(self.conv1_2, 'pool1', debug)

self.conv2_1 = self._conv_layer(self.pool1, "conv2_1")
self.conv2_2 = self._conv_layer(self.conv2_1, "conv2_2")
self.pool2 = self._max_pool(self.conv2_2, 'pool2', debug)

self.conv3_1 = self._conv_layer(self.pool2, "conv3_1")
self.conv3_2 = self._conv_layer(self.conv3_1, "conv3_2")
self.conv3_3 = self._conv_layer(self.conv3_2, "conv3_3")
self.pool3 = self._max_pool(self.conv3_3, 'pool3', debug)

self.conv4_1 = self._conv_layer(self.pool3, "conv4_1")
self.conv4_2 = self._conv_layer(self.conv4_1, "conv4_2")
self.conv4_3 = self._conv_layer(self.conv4_2, "conv4_3")

if use_dilated:
    pad = [[0, 0], [0, 0]]
    self.pool4 = tf.nn.max_pool(self.conv4_3, ksize=[1, 2, 2, 1],
                                strides=[1, 1, 1, 1],
                                padding='SAME', name='pool4')
    self.pool4 = tf.space_to_batch(self.pool4,
                                   paddings=pad, block_size=2)
else:
    self.pool4 = self._max_pool(self.conv4_3, 'pool4', debug)

self.conv5_1 = self._conv_layer(self.pool4, "conv5_1")
self.conv5_2 = self._conv_layer(self.conv5_1, "conv5_2")
self.conv5_3 = self._conv_layer(self.conv5_2, "conv5_3")
if use_dilated:
    pad = [[0, 0], [0, 0]]
    self.pool5 = tf.nn.max_pool(self.conv5_3, ksize=[1, 2, 2, 1],
                                strides=[1, 1, 1, 1],
                                padding='SAME', name='pool5')
    self.pool5 = tf.space_to_batch(self.pool5,
                                   paddings=pad, block_size=2)
else:
    self.pool5 = self._max_pool(self.conv4_3, 'pool4', debug)

self.fc6 = self._fc_layer(self.pool5, "fc6")

if train:
    self.fc6 = tf.nn.dropout(self.fc6, 0.5)

self.fc7 = self._fc_layer(self.fc6, "fc7")
if train:
    self.fc7 = tf.nn.dropout(self.fc7, 0.5)

if use_dilated:
    self.pool5 = tf.batch_to_space(self.pool5, crops=pad, block_size=2)
    self.pool5 = tf.batch_to_space(self.pool5, crops=pad, block_size=2)
    self.fc7 = tf.batch_to_space(self.fc7, crops=pad, block_size=2)
    self.fc7 = tf.batch_to_space(self.fc7, crops=pad, block_size=2)
    return

if random_init_fc8:
    self.score_fr = self._score_layer(self.fc7, "score_fr",
                                      num_classes)
else:
    self.score_fr = self._fc_layer(self.fc7, "score_fr",
                                   num_classes=num_classes,
                                   relu=False)

self.pred = tf.argmax(self.score_fr, dimension=3)

self.upscore2 = self._upscore_layer(self.score_fr,
                                    shape=tf.shape(self.pool4),
                                    num_classes=num_classes,
                                    debug=debug, name='upscore2',
                                    ksize=4, stride=2)
self.score_pool4 = self._score_layer(self.pool4, "score_pool4",
                                     num_classes=num_classes)
self.fuse_pool4 = tf.add(self.upscore2, self.score_pool4)

self.upscore4 = self._upscore_layer(self.fuse_pool4,
                                    shape=tf.shape(self.pool3),
                                    num_classes=num_classes,
                                    debug=debug, name='upscore4',
                                    ksize=4, stride=2)
self.score_pool3 = self._score_layer(self.pool3, "score_pool3",
                                     num_classes=num_classes)
self.fuse_pool3 = tf.add(self.upscore4, self.score_pool3)

self.upscore32 = self._upscore_layer(self.fuse_pool3,
                                     shape=tf.shape(bgr),
                                     num_classes=num_classes,
                                     debug=debug, name='upscore32',
                                     ksize=16, stride=8)

self.pred_up = tf.argmax(self.upscore32, dimension=3)

文章参考链接

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html
https://datascience.stackexchange.com/questions/6107/what-are-deconvolutional-layers
https://github.com/muyang0320/tf-fcn

你可能感兴趣的:(深度学习,网络,深度学习,计算机视觉,人工智能,神经网络)