https://download.csdn.net/download/qq_41689620/10613800
# -*- coding: utf-8 -*-
"""
-------------------------------------------------------------
# @Version : python3.6
# @Author : wangTongGen
# @File : SaDecoder.py
# @Software: PyCharm
# @Time : 2018/4/21 15:18
-------------------------------------------------------------
# @Description: This code is programed to plot SA_radarof PPI
-------------------------------------------------------------
"""
import matplotlib.pyplot as plt
import numpy as np
from array import array
from matplotlib import colors
import tkinter as tk
from tkinter import filedialog
def main():
file= openFile()
k = int(input('请输入您想观察的仰角,请选择1 3 5 6 7 8 9 10 11:'))
print('数据读取中,请稍后...')
el, az, rl, dbz = saDecoder(file,k)
# el, az, rl, dbz = dataLink(el, az, rl, dbz) #调用该语句则将数据按照1-360度的方位角排序
x, y, h = sph2cord(el, az, rl)
plotFunction(x, y, dbz, k)
def openFile():
root = tk.Tk()
root.withdraw()
return filedialog.askopenfilename()
def saDecoder(file, k):
f = open(file, 'rb')
data = np.asarray(array('B', f.read()))
data = data.reshape(len(data)//2432, 2432)
if data[0,72] == 11:
phi = [0.50, 0.50, 1.45, 1.45, 2.40, 3.35, 4.30, 5.25, 6.2, 7.5, 8.7, 10, 12, 14, 16.7, 19.5]
if data[0, 72] == 21:
phi = [0.50, 0.50, 1.45, 1.45, 2.40, 3.35, 4.30, 6.00, 9.00, 14.6, 19.5]
if data[0, 72] == 31:
phi = [0.50, 0.50, 1.50, 1.50, 2.50, 2.50, 3.50, 4.50]
if data[0, 72] == 32:
phi = [0.50, 0.50, 2.50, 3.50, 4.50]
el = np.zeros((len(data), 460)) #仰角
az = np.zeros((len(data), 460)) #方位角
rl = np.zeros((len(data), 460)) #径向长度
dbz = np.zeros((len(data), 460)) #反射率
count = 0
while count < len(data):
el_number = data[count,44] + 256 * data[count,45] #仰角序数
az_value = (data[count,36] + 256 * data[count,37]) / 8 * 180 / 4096 #方位角
d_value = data[count,54] + 256 * data[count,55] #库长
if d_value == 0:
count += 1
continue
else:
count += 1
i = 0
while i < 460:
el[count-1, i] = phi[el_number-1]
az[count-1, i] = az_value
rl[count-1, i] = i + 1
#计算反射率
if i > d_value:
dbz[count-1, i] = -9900
else:
if data[count-1, 128+i] == 0: #无回波数据
dbz[count-1, i] = -9900
elif data[count-1, 128+i] == 1: #距离模糊
dbz[count-1, i] = -9901
else:
dbz[count-1, i] = (data[count-1, 128+i] - 2) / 2 - 32
i += 1
m = 1
while m < len(data):
if data[m,44] > (k-1):
break
m += 1
n = m
while n < len(data):
if data[n,44] > k:
break
n += 1
elVlues = el[m:n,0:230] #对应第k个仰角的仰角值
azValues = az[m:n,0:230] #对应的方位角
rlValues = rl[m:n,0:230] #对应的径向长度
dbzValues = dbz[m:n,0:230] #对应的回波强度
return elVlues, azValues, rlValues, dbzValues
def sph2cord(el, az, r):
e, a = np.deg2rad([el, az])
x = r * np.cos(e) * np.sin(a)
y = r * np.cos(e) * np.cos(a)
h = r * np.sin(e)
return x, y, h
def plotFunction(x, y, dbz, k):
phi = [0.50, 0.50, 1.45, 1.45, 2.40, 3.35, 4.30, 6.00, 9.00, 14.6, 19.5]
cdict = ['#606060', '#01ADA5', '#C0C0FE', '#7B72EF', '#1F27D1',
'#A6FDA8', '#00EA00', '#10921A', '#FCF465', '#C9C903', '#8C8C00',
'#FFACAC', '#FE655C', '#EE0231', '#D58FFE', '#AA25FA', '#FFFFFF']
cmap = colors.ListedColormap(cdict)
norm = colors.Normalize(vmin=-15,vmax=70)
x = np.concatenate((x, [x[0]])) # 闭合
y = np.concatenate((y, [y[0]])) # 闭合
plt.pcolor(x,y,dbz,norm=norm,cmap=cmap)
plt.title('Reflectivity'+'('+str(phi[k-1])+',Beijing 20160719 UTC)')
plt.axis('square')
plt.colorbar()
plt.savefig('../imgs/Beijing_'+str(phi[k-1])+'.png')
plt.show()
#将数据按照1-360度的方位角排序
def dataLink(el,az,rl,dbz):
El = np.zeros((360, 230))
Az = np.zeros((360, 230))
Rl = np.zeros((360, 230))
DBZ = np.zeros((360, 230))
for i in range(0, 361):
err = np.abs(az[:, 0] - i)
id = np.argmin(err)
El[i-1,:] = el[id,:]
Az[i-1,:] = az[id,:]
Rl[i-1,:] = rl[id,:]
DBZ[i-1,:] = dbz[id,:]
return El, Az, Rl, DBZ
if __name__ == '__main__':
main()