目录
前言
一、导入.xls或.xlsx文件
1.常规导入示例:
2.通过行、例索引导入
3.常用方法
二、导入CSV文件
1.导入.csv文件主要使用Pandas的read_csv()方法
三、导入.txt文本文件
1. 使用 read_csv() 方法导入 1月的 .txt 文件示例:
四、导入HTML网页
1.使用 read_html() 方法导入 NBA 球员的薪资数据示例:
前言
pandas主要包括两个数据结构,即Series对象和DataFrame对象,本文主要分别介绍导入外部数据(.xls或.xlsx和.csv或.txt或html网页)。
一、导入.xls或.xlsx文件
常用Pandas的read_excel( )方法,语法如下:
pandas.read_excel(
io,sheet_name=0,header0,names=None,index_col=None,usecols=None,squeeze=False,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skiprows=None,nrow=None,na_values=None,keep_default_na=True,verbose=False,parse_dates=False,date_parser=None,thousands=None,comment=None,skipfooter=0,conver_float=True,mangle_dupe_cols=True, **kwds)
参数说明:
io:字符串,.xls或.xlsx文件路径或文件对象(数据的加载路径)
sheet_name:None、字符串、整数、字符串列表或整数列表,默认值为 0。字符串用于工作表名称,整数为索引表示工作表位置,字符串列表或整数列表用于请求多个工作表,为 None时获取所有工作表。参数值如下图所示
值
说明
sheet_name=0
第一个Sheet页中的数据作为DataFrame
sheet_name=1
第二个Sheet页中的数据作为DataFrame
sheet_name=''Sheet1''
名为Sheet的Sheet页的数据作为DataFrame
sheet_name=[0,1,'Sheet3']
第一个、第二个和名为Sheet的Sheet页中的数据作为DataFrame
header:指定作为列名的行,默认值为0,即取第一行的值为列名。数据为除列名以外的数据;若数据不包含列名,则改首 header-None。
names:默认值为 None,要使用的列名列表。
index_col:指定列为索引列,默认值为 None,索引0是 DataFrame 的行杯签。
usecols:int、list 列表或子符串,默认值为 None。
>>如果为 None,则解析所有列。 >>如果为int,则解析最后一列。 >>如果为 list 列表,则解析列号列表的列。 >>如果为字符串,则表示以逗号分隔的 Excel 列字母和列范围列表 (例如“A:E”或 “A,C,E:F”)。范围包括双方。
squeeze:布尔值,默认值为 False, 如果解析的数据只包含一列,则返回一个 Series。
dtype:列的数据类型名称或字典,默认值为 None。例如{a':np.float64,b'np.int32}。
skiprows:省略指定行数的数据,从第一行开始。
skipfooter: 省略指定行数的数据,从尾部数的行开始。
1.常规导入示例:
import pandas as pd
df = pd.read_excel('data.xlsx',encoding='utf-8')
print(df)
姓名 年龄 工作 工资 0 张三 25 学生 200 1 李四 24 工人 3000 2 王五 22 NaN 5000 3 冯六 33 包工头 8000
第一个参数是路径,既可以使用绝对路径又可以使用相对路径,如果文件名含有汉字,注意指定设置一下属性encoding = 'utf-8'
,另设置sheet_name
指定具体的Sheet名字,也可传入sheet的顺序,从0开始。
2.通过行、例索引导入
DataFirarme 是二维数据结构,因此它既有行索引又有列素引。当导入 Excel 数据时,行索引会自动生成,而列素引则默认将第0行作为列素引
df = pd.read_excel('data.xlsx',encoding='utf-8',usecols=[0,2])
姓名 工作 0 张三 学生 1 李四 工人 2 王五 NaN 3 冯六 包工头
3.常用方法
shape()
可以获取excel文件的行和列,以元祖形式返回;
info()
获取数据类型;
astype()
可转换列里面的数据类型,括号里是要转换的目标类型;如df[列2].astype('float64')
; df['列'].dtype
可查看列的类型
isnull()
判断哪个值是缺失值;
dropna()
删除有缺失值的行,返回删除后的数据,传入参数how=all,要全为空值才会删除;
fillna()
括号内可直接填入要要填充的值,也可指定列填充,以字典 形式传参;
drop_duplicates()
默认对所有重复值判断,默认保留keep=first
第一个行值;通过keep
修改,值可为last
,保留最后一个,还可设置keep
为False
,一个也不保留。另也可指定列名去重,如传入参数subset
=['列名1,列名2'],注意是以列表形式传参;
head()
传入的参数代表获取前几行;
describe()
掌握数值的分布情况,如均值,最值,方差,分位数。
column
和index
可设置列索引
和行索引
,以列表
形式传参;
set_index()
重新设置索引列,传入要指名要用做行索引的名称;
reset_index(level = None,drop=False,inplace = False)
,level指定要将层次化索引的第几级别转化为columns
,第一个索引为0级,第二个为1级,默认全部转化为columns。drop
是否将原索引删掉,inplace
是否修改原数据表;该方法常用于数据分组和数据透视表中。
rename()
重命名索引,可重新设置columns
和index
,以字典
形式传参,key
为原值,value
为替换后的值。
二、导入CSV文件
1.导入.csv文件主要使用Pandas的read_csv()方法
import pandas as pd
df = pd.read_csv('data.csv',encoding='gbk',)
print(df)
注意:
上述代码中指定了编码格式,即encoding-gbk'。Dython 常用的编码格式是UIF-8和gbk,默认编码格式为 UTF-8。导入.csv文件时,需要通过encoding 参数指定编码格式。当将Excel文件另存为.csv 文件时,默认编码格式为gbk,此时当编写代码导入.csv 文件时,就需要设置编码格式为gbk,与源文件编码格式保持一致;否则会提示错误。
三、导入.txt文本文件
导入.txt 文件同样使用 Pandas的read_csv()方法,不同的是需要指定sep参数(如制表行\t)。read_ csv()方法读取.txt 文件返回一个 DataFrame,像表格一样的二维数据结构,如图所示。
1. 使用 read_csv() 方法导入 1月的 .txt 文件示例:
四、导入HTML网页
导入 HTML 网页数据主要使用 Pandas 的read_html方法,该方法用于导入带有table 标签的网页 表格数据,语法如下:
pandas.read_html(
io,match='.+',flavor=None,header=None,index_col=None,skiprows=None,attrs=None,parse_dates=False,thousands=',',encoding=None,decimal='.',converters=None,na_values=None,keep_default_na=True,displayed_only=True)
常用参数说明: io: 字符串,文件路径,也可以是 URL 链接。网址不接受https,可以尝试去掉https 中的s 后爬取,如 http://www.mingribook.com。
match:正则表达式,返回与正则表达式匹配的表格。
flavor:解析器默认为 lxml。
header:指定列标题所在的行,列表 list 为多重索引。
index_col:指定行标题对应的列,列表 list 为多重索引。
encoding: 宇符串,默认为 None, 文件的编码格式。
返回值:返回一个 DataFrame。
使用read_htnl()方法前,首先要确定网页表格是否为 table 类型。例如,NBA 球员薪资网页 (http://www.espn.com/nba/salaries),右击该网页中的表格,在弹出的快捷菜单中选择“检查元素” 命令,查看代码中是否含有表格标签
...</table>的宇样,确定后才可以使用read_html()方法。
1.使用 read_html() 方法导入 NBA 球员的薪资数据示例:
参考链接:
http://www.360doc.com/content/23/0109/08/73874201_1063030517.shtml
你可能感兴趣的:(pandas)
Python数据分析与可视化实战指南
William数据分析
python python 数据
在数据驱动的时代,Python因其简洁的语法、强大的库生态系统以及活跃的社区,成为了数据分析与可视化的首选语言。本文将通过一个详细的案例,带领大家学习如何使用Python进行数据分析,并通过可视化来直观呈现分析结果。一、环境准备1.1安装必要库在开始数据分析和可视化之前,我们需要安装一些常用的库。主要包括pandas、numpy、matplotlib和seaborn等。这些库分别用于数据处理、数学
《Python数据分析实战终极指南》
xjt921122
python 数据分析 开发语言
对于分析师来说,大家在学习Python数据分析的路上,多多少少都遇到过很多大坑**,有关于技能和思维的**:Excel已经没办法处理现有的数据量了,应该学Python吗?找了一大堆Python和Pandas的资料来学习,为什么自己动手就懵了?跟着比赛类公开数据分析案例练了很久,为什么当自己面对数据需求还是只会数据处理而没有分析思路?学了对比、细分、聚类分析,也会用PEST、波特五力这类分析法,为啥
Python开发常用的三方模块如下:
换个网名有点难
python 开发语言
Python是一门功能强大的编程语言,拥有丰富的第三方库,这些库为开发者提供了极大的便利。以下是100个常用的Python库,涵盖了多个领域:1、NumPy,用于科学计算的基础库。2、Pandas,提供数据结构和数据分析工具。3、Matplotlib,一个绘图库。4、Scikit-learn,机器学习库。5、SciPy,用于数学、科学和工程的库。6、TensorFlow,由Google开发的开源机
自然语言处理_tf-idf
_feivirus_
算法 机器学习和数学 自然语言处理 tf-idf 逆文档频率 词频
importpandasaspdimportmath1.数据预处理docA="Thecatsatonmyface"docB="Thedogsatonmybed"wordsA=docA.split("")wordsB=docB.split("")wordsSet=set(wordsA).union(set(wordsB))print(wordsSet){'on','my','face','sat',
K近邻算法_分类鸢尾花数据集
_feivirus_
算法 机器学习和数学 分类 机器学习 K近邻
importnumpyasnpimportpandasaspdfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccuracy_score1.数据预处理iris=load_iris()df=pd.DataFrame(data=ir
python编写直方图和饼图
2301_80421078
python 开发语言
1.直方图#直方图的绘制#语法格式:plt.hist(x,bins),其中x:数据集;bins:统计数据的分布区间importmatplotlib.pyplotaspltimportpandasaspd#导入文件excel=pd.read_excel('成绩.xlsx')#print(excel)#避免乱码plt.rcParams['font.sans-serif']=['SimHei']x=ex
pythonpandas函数详解_Python pandas常用函数详解
Senvn
本文研究的主要是pandas常用函数,具体介绍如下。1import语句importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportdatetimeimportre2文件读取df=pd.read_csv(path='file.csv')参数:header=None用默认列名,0,1,2,3...names=['A','B','C'
python画出分子化学空间分布(UMAP)
Sakaiay
python
利用umap画出分子化学空间分布图安装pipinstallumap-learn下面是用一个数据集举的例子importtorchimportumapimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsfromsklearn.manifoldimportTSNEfromrdkit.Chemimport
python读写CSV文件
bcbobo21cn
.Net python 开发语言 机器学习 CSV
做数据分析,有时候要分析的数据在CSV文件里;先看一下python读写CSV文件;importpandasaspddf=pd.read_csv('test1.csv')print(df)print('')print(df.head(2))companyname=["A1","B2","E3","F4"]legperson=["lier","yanqi","wangwu","zhangsan"]le
python如何更方便的处理日期和时间
openwin_top
python编程示例系列 python编程示例系列二 python java 前端
Arrow是一个第三方Python库,提供了更加易用和方便的日期和时间处理接口。它的设计目标是提供一种简单、一致且易于使用的API,以替代Python内置的datetime模块。Arrow支持各种日期和时间的操作,包括时区转换、日期和时间格式化、日期和时间差计算等功能。它还支持与其他日期和时间库的互操作,例如datetime、dateutil和pandas等库。以下是一个使用Arrow库的简单示例
python下载pandas库镜像_下载pandas库
weixin_39791152
背景交代:在下载matplotlib库时,我已经将pip的下载源手动更改为清华的镜像,所以,如果有小伙伴在下载库遇到问题,如timeout,请先将下载源改为国内镜像,具体操作见我的另一篇文章:今天的主题是安装pandas库~首先,按田字格+R,打开cmd,输入:pipinstallpandas嗯,不出所料地报错了……主要原因:pip._vendor.urllib3.exceptions.ReadT
python数据分析知识点大全
编程零零七
python数据分析 python 开发语言 python数据分析 数据分析知识点大全 python数据分析知识点 python教程 python基础
Python数据分析知识点大全可以归纳为以下几个主要方面:一、基础概念与目的数据分析定义:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论,对数据加以详细研究和概括总结的过程。其目的在于从数据中挖掘规律、验证猜想、进行预测。Python在数据分析中的优势:Python因其易学性、快速开发、丰富的扩展库(如NumPy、Pandas等)和成熟的框架,成为数据分析领域的
如何“选择不同的“?跨越 pandas 中的多个数据框列?
潮易
pandas
在pandas中,如果你想要选择不同的列,你可以使用DataFrame的loc属性和iloc属性的组合。loc属性是基于标签的,iloc属性则是基于索引的。如果你想要选择多个列,你只需要将它们放入一个列表即可。以下是一个代码示例:```pythonimportpandasaspd#创建一个数据框df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]
详解 Pandas 的 query 函数
文刀小桂
Pandas pandas python 开发语言
Pandas的query()方法能够使用字符串表达式来筛选DataFrame数据的行,类似于SQL的where子句importpandasaspddf=pd.DataFrame({"A":[1,3,5,6,7],"B":[11,10,9,8,12],"C":["hello","pandas","python","java","shell"],"D":["2024-02-01","2023-12-1
详解 Pandas 的 isin 用法
文刀小桂
Pandas pandas python
Pandas的isin()方法可以判断数据值是否在某个数据集合中,若与集合中的某个值相等则返回True,反之返回False。importpandasaspddf=pd.DataFrame({"title":["one","two","three","four"],"type":["small","common","middle","large"],"num":[10,20,30,40]})#1.判
Rust: duckdb和polars读csv文件比较
songroom
rust 开发语言 后端
duckdb在数据分析上,有非常多不错的特质。1、快;2、客户体验好,特别是可以同时批量读csv(在一个目录下的csv等文件)。polars的性能比pandas有非常多的超越。但背后的一些基于arrow的技术栈有很多相同之类。今天想比较一下两者在csv数据读写的情况。一、文件准备csv样本内容,是N行9列的csv标准格式,有字符串,有浮点数,有整型。具体如下:本次准备了两个csv文件,一个大约是2
groupby 中如何显示 tqdm 的进度条?
domodo2020
在循环时调用tqdm显示进度已经是一个常规操作,常见的方式是foriiintqdm(...):...while循环的情况类似,whileicntintqdm(range(n)):...icnt+=1这里记录没有显式循环时,在groupby中的用法:importpandasaspdimportnumpyasnpfromtqdmimporttqdmdf=pd.DataFrame(np.random.r
pandas读取xlsx文件使用sqlachemy写到数据库
hzw0510
pandas pandas 数据库
pandas读取xlsx文件使用sqlachemy写到数据库要使用pandas和SQLAlchemy将Excel文件中的数据读取到数据库中,你可以按照以下步骤进行操作:安装必要的库:确保你已经安装了pandas、SQLAlchemy和openpyxl(用于读取Excel文件)。可以使用以下命令安装:pipinstallpandassqlalchemyopenpyxl如果你使用的是特定的数据库(如S
python 问题 ‘list‘ object cannot be interpreted as an integer 和‘int‘ object is not iterable
annekqiu
python
访问同一个excel表格(含有多个sheet)importnumpyasnpimportpandasaspdimportxlrd#读取excel的库importxlwt#写excel的库data=xlrd.open_workbook('./161005.xlsx')#打开excel文件读取数据table=data.sheets()[0]#读取sheet1h=table.ncols#获得列表数目a1
【Python】 写入Pandas DataFrame到CSV文件
civilpy
python pandas 开发语言
基本原理Pandas是一个强大的Python数据分析库,它提供了许多用于数据处理和分析的功能。在处理数据时,我们经常需要将数据保存到文件中,以便后续使用或分享。CSV(Comma-SeparatedValues,逗号分隔值)文件是一种常见的数据交换格式,它以纯文本形式存储表格数据,每行表示一个数据记录,列之间用逗号分隔。DataFrame是Pandas中用于存储表格数据的主要数据结构。它类似于Ex
Python酷库之旅-第三方库Pandas(115)
神奇夜光杯
python pandas 开发语言 人工智能 标准库及第三方库 excel 学习与成长
目录一、用法精讲506、pandas.DataFrame.rank方法506-1、语法506-2、参数506-3、功能506-4、返回值506-5、说明506-6、用法506-6-1、数据准备506-6-2、代码示例506-6-3、结果输出507、pandas.DataFrame.round方法507-1、语法507-2、参数507-3、功能507-4、返回值507-5、说明507-6、用法507
Python数据分析之股票信息可视化实现matplotlib
Blogfish
Python3 大数据 python 可视化 数据分析
今天学习爬虫技术数据分析对于股票信息的分析及结果呈现,目标是实现对股票信息的爬取并对数据整理后,生成近期成交量折线图。首先,做这个案例一定要有一个明确的思路。知道要干啥,知道用哪些知识,有些方法我也记不住百度下知识库很强大,肯定有答案。有思路以后准备对数据处理,就是几个方法使用了。接口地址参考:Tushare数据涉及知识库:tushare-一个财经数据开放接口;pandas-实现将数据整理为表格,
pandas中的loc和iloc
白日与明月
python 数据挖掘 pandas
loc和iloc的比较.loc和.iloc是pandas提供的两种不同的索引方法,它们的主要区别在于索引数据的依据:.loc:基于标签的索引,使用DataFrame或Series的索引标签(即行名和列名)来获取数据。可以使用单个标签、标签列表、标签切片、布尔数组或者callable函数作为索引器。如果使用标签索引并且标签不存在,.loc会抛出一个KeyError。对于切片,包括两端的标签。.ilo
pandas loc与iloc的区别
authorized_keys
数据处理 python pandas loc iloc
目录一、二者的特点二、官网原文三、例子——总有一款适合你一、二者的特点loc可用“字符”、“整数”、“布尔值”作为索引,也就是标签索引注意:此处的“整数”将被解释为index的一个label而不是index的位置iloc只允许“整数”作为索引,也就是位置索引,和列表索引类似,里面只能是数字注意:此处的“整数”将被解释为index的位置,前闭后开其中,loc是指location的意思,iloc中的i
pandas中loc和iloc的区别
林光虚霁晓
数据分析 pandas
在Pandas中,loc和iloc是用于选择和过滤数据的两种主要方法,它们的区别在于使用的索引类型。1.loc:基于标签索引loc是基于行或列的标签(label)来选择数据。它可以按行或列的名称来访问数据,也可以通过布尔索引选择。支持的索引类型:行标签、列标签、布尔索引。语法:DataFrame.loc[row_indexer,column_indexer]示例importpandasaspd#创
seurat自学笔记1.0 单细胞数据导入
Sanye2022
python pandas
Python读取.h5ad文件importanndataimportpandasaspdadata=anndata.read("/home/R/R_data/Seurat/PBMC10/output/adata.h5ad")#adata.X.todense()#将稀疏矩阵转成普通矩阵#X=pd.DataFrame(adata.X.todense())#cell_name=adata.obs.ind
Pandas教程:详解Pandas数据清洗
旦莫
Python Pandas python pandas 数据分析
目录1.引言2.Pandas基础2.1安装与导入2.2创建一个复杂的DataFrame3.数据清洗流程3.1处理缺失值3.1.1删除缺失值3.1.2填充缺失值3.2数据去重3.3数据类型转换4.数据处理与变换4.1添加与删除列4.2数据排序5.数据分组与聚合6.其他数据清洗方法6.1字符串处理6.2时间序列处理6.3数据类型转换1.引言数据清洗是数据科学和数据分析中的一个重要步骤,旨在提升数据的质
python的pandas库
帅维维
python pandas 开发语言
什么是pandasPandas是一个开源的第三方Python库,它从Numpy和Matplotlib的基础上构建而来,享有数据分析“三剑客之一”的盛名。Pandas已经成为Python数据分析的必备高级工具,目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。数据结构Pandas中除了Panel数据结构,还引入了两种新的数据结构——Series和DataFrame,这两种数据结构都建立在Nu
Python数据分析及可视化教程--商城订单为例-适用电商相关进行数据分析---亲测可用!!!!
Dreams°123
AIGC 机器学习 python 测试工具 数据分析 大数据
前言:Python是进行数据分析和可视化的强大工具,常用的库包括Pandas、NumPy、Matplotlib和Seaborn。以下是一个基本的教程概述,介绍了如何使用这些库来进行数据分析和可视化:Python数据分析及可视化教程1、环境准备2、数据准备3、开始数据分析3.1、导入库3.2、加载数据3.3、数据预处理3.4、数据分析3.5、数据可视化4、总结解释使用方法:5、错误处理和异常判断说明
python第三方库手动安装教程_为了应对异常情况,提供最原始的python第三方库的安装方法:手动安装。往往是Windows用户需要用到这种方法。...
weixin_39735247
进入pypi.python.org,搜索你要安装的库的名字,这时候有3中可能:第一种是exe文件,这种最方便,下载满足你的电脑系统和python环境的对应的exe,再一路点击next就可以安装。第二种是.whl类文件,好处在于可以自动安装依赖包。第三种是源码,大概都是zip、tar.zip、tar.bz2格式的压缩包,这个方法要求用户已经安装了这个包所依赖的其他包。例如pandas依赖于numpy
Js函数返回值
_wy_
js return
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
Quartz——TriggerListener和JobListener
eksliang
TriggerListener JobListener quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee 泛型 类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
Java Socket 多线程实现文件传输
随便小屋
java socket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
APP推广
aoyouzi
APP 推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
JSP转发与重定向
百合不是茶
jsp servlet Java Web jsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
web.xml之jsp-config
bijian1013
java web.xml servlet jsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
JSF2.2 ViewScoped Using CDI
sunjing
CDI JSF 2.2 ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
ajax大参数(大数据)提交性能分析
chenbowen00
Web Ajax 框架 浏览器 prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
[宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
ORACLE中CONSTRAINT的四对属性
daizj
oracle CONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
java 二分查找
shuizhaosi888
二分查找 java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
Spring Security(07)——缓存UserDetails
234390216
ehcache 缓存 Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
Dozer 深层次复制
jayluns
VO maven po
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
CSS规范整理(摘自懒人图库)
a409435341
html UI css 浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
C++动态链接库创建与使用
你不认识的休道人
C++ dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery 编程 ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement