数据结构与算法学习-二叉堆及堆排序

1. 二叉堆定义

(1)堆是一个完全二叉树

(2)堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

第一点,堆必须是一个完全二叉树。,除最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

第二点,堆中的每个节点的值必须大于等于(或者小于等于)其子树中每个节点的值。也可以理解为,堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。

这里我们借助于堆这种数据结构实现的排序算法,就叫作堆排序。这种排序方法的时间复杂度非常稳定,是O(nlogn),并且它还是原地排序算法。

对于每个节点的值都大于等于子树中每个节点值的堆,叫作“大顶堆”

big_heap.png

对于每个节点的值都小于等于子树中每个节点值的堆,叫作“小顶堆”

small_heap.png

2. 堆的操作

堆的操作基本就是 3 种,掺入、删除和排序,下面就讲一下这几种操作的过程以及代码实现。

完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间,不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

左子节点 = 父节点 * 2 + 1

右子节点 = 父节点 * 2 + 2

下面几个过程均以大顶堆为例,小顶堆同样道理,只是大小相反。

2.1 插入节点

插入一个节点,需要将节点放到数组的尾部,然后执行向上堆化过程,这里成为【上浮】,保证堆顶部的元素最大,对每个父节点来说,均大于等于子节点。

public class Heap {

    /**
     * 堆的数组
     */
    private int[] arr;
    /**
     * 堆的最大数据个数
     */
    private int max;
    /**
     * 堆中数据个数
     */
    private int size;

    public Heap(int capacity) {
        arr = new int[capacity];
        max = capacity;
        size = 0;
    }

    // 插入节点
    public void insert(int value) {
        if (size == max) {
            return;
        }
        arr[size] = value;
        int childIndex = size;
        int parentIndex = (childIndex - 1) / 2;
        while (childIndex > 0 && value > arr[parentIndex]) {
            arr[childIndex] = arr[parentIndex];
            childIndex = parentIndex;
            parentIndex = (parentIndex - 1) / 2;
        }
        arr[childIndex] = value;
        size++;
    }

2.2 删除节点

删除节点,对于堆来说,删除一般是从堆顶删除,对于大顶堆,就是删除最大的元素,那么删除之后就需要再从堆中找到最大的元素,放到顶部。假设最后一个元素最大,把它放在顶部,然后执行向下堆化过程,这里称为【下沉】,执行这个过程之后,就将顶部元素下沉到某一个位置,每次下沉的条件是子元素的值比父元素大,需要完成交换,所以执行之后,就可以保证父节点的值大于等于子节点的值。

    public int removeMax() {
        if (arr == null || size == 0) {
            return -1;
        }
        size--;
        int result = arr[0];
        arr[0] = arr[size];
        downAdjust(arr, size, 0);
        return result;
    }

    /**
     * 下沉
     *
     * @param arr  数组
     * @param size 数组大小
     * @param i    索引
     */
    private static void downAdjust(int[] arr, int size, int i) {
        int temp = arr[i];
        int parentIndex = i;
        int childIndex = 2 * parentIndex + 1;
        while (childIndex < size) {
            // 如果有右孩子,且右孩子大于左孩子的值,则定位到右孩子
            if (childIndex + 1 < size && arr[childIndex] < arr[childIndex + 1]) {
                childIndex++;
            }
            if (temp >= arr[childIndex]) {
                break;
            }
            arr[parentIndex] = arr[childIndex];
            parentIndex = childIndex;
            childIndex = 2 * childIndex + 1;
        }
        arr[parentIndex] = temp;
    }

2.3 排序

堆排序需要两个过程:建堆和

建堆:就是让所有非叶子节点依次下沉,从倒数第二排非叶子元素开始执行,一直循环到第一个元素,这样就保证所有父节点大于等于子节点,堆顶元素是最大的。

排序:建堆之后,由于堆顶元素最大,那么可以将最大元素和最后一个元素交换,这样最大值就确定了;然后将剩下的元素执行堆化,也就是将刚刚交换的元素下沉操作,这个过程之后,堆顶元素又是最大的,然后重复这个过程,就能将堆中元素完成从小到大的排序。

时间复杂度:

(1)每个堆化过程时间复杂度是 O(logn),因为树的高度是 logn,建堆总共次数是 n/2 * logn,所以建堆过程时间复杂度是 O(nlogn)

(2)排序过程:每个下沉过程时间复杂度是O(logn),一共执行 n - 1 次,所以排序过程就是 O(nlogn)

最终堆排序过程就是 O(nlogn)

    /**
     * 构建堆
     *
     * @param arr    数组
     * @param length 长度
     */
    private static void buildHeap(int[] arr, int length) {
        for (int i = (length - 2) / 2; i >= 0; i--) {
            downAdjust(arr, length, i);
        }
    }

    /**
     * 堆排序
     *
     * @param arr 数组
     * @param n   n为数组长度
     */
    public static void sort(int[] arr, int n) {
        if (arr == null) {
            return;
        }
        buildHeap(arr, n);
        int k = n - 1;
        while (k > 0) {
            // 交换堆顶元素和最后一个元素
            int temp = arr[0];
            arr[0] = arr[k];
            arr[k] = temp;
            k--;
            downAdjust(arr, k, 0);
        }
    }

参考

漫画:什么是二叉堆

代码地址

你可能感兴趣的:(数据结构与算法学习-二叉堆及堆排序)