原文: https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/0014319272686365ec7ceaeca33428c914edf8f70cca383000
进程和线程
很多同学都听说过,现代操作系统比如Mac OS X,UNIX,Linux,Windows等,都是支持“多任务”的操作系统。
什么叫“多任务”呢?
简单地说,就是操作系统可以同时运行多个任务。
打个比方,你一边在用浏览器上网,一边在听MP3,一边在用Word赶作业,这就是多任务,至少同时有3个任务正在运行。
还有很多任务悄悄地在后台同时运行着,只是桌面上没有显示而已。
现在,多核CPU已经非常普及了,但是,即使过去的单核CPU,也可以执行多任务。
由于CPU执行代码都是顺序执行的,那么,单核CPU是怎么执行多任务的呢?
答案就是操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒……这样反复执行下去。
表面上看,每个任务都是交替执行的,但是,由于CPU的执行速度实在是太快了,我们感觉就像所有任务都在同时执行一样。
真正的并行执行多任务只能在多核CPU上实现,但是,由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行。
对于操作系统来说,一个任务就是一个进程(Process),
比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。
有些进程还不止同时干一件事,比如Word,它可以同时进行打字、拼写检查、打印等事情。
在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)。
由于每个进程至少要干一件事,所以,一个进程至少有一个线程。
当然,像Word这种复杂的进程可以有多个线程,多个线程可以同时执行,多线程的执行方式和多进程是一样的,
也是由操作系统在多个线程之间快速切换,让每个线程都短暂地交替运行,看起来就像同时执行一样。
当然,真正地同时执行多线程需要多核CPU才可能实现。
如果我们要同时执行多个任务怎么办?
有两种解决方案:
一种是启动多个进程,每个进程虽然只有一个线程,但多个进程可以一块执行多个任务。
还有一种方法是启动一个进程,在一个进程内启动多个线程,这样,多个线程也可以一块执行多个任务。
当然还有第三种方法,就是启动多个进程,每个进程再启动多个线程,这样同时执行的任务就更多了,当然这种模型更复杂,实际很少采用。
总结一下就是,多任务的实现有3种方式:
- 多进程模式;
- 多线程模式;
- 多进程+多线程模式。
小结
线程是最小的执行单元,而进程由至少一个线程组成。如何调度进程和线程,完全由操作系统决定,程序自己不能决定什么时候执行,执行多长时间。
多进程和多线程的程序涉及到同步、数据共享的问题,编写起来更复杂。
进程 vs. 线程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。
现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。
多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。
多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。
在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式,真是把问题越搞越复杂。
线程切换
无论是多进程还是多线程,只要数量一多,效率肯定上不去,为什么呢?
我们打个比方,假设你不幸正在准备中考,每天晚上需要做语文、数学、英语、物理、化学这5科的作业,每项作业耗时1小时。
如果你先花1小时做语文作业,做完了,再花1小时做数学作业,这样,依次全部做完,一共花5小时,这种方式称为单任务模型,或者批处理任务模型。
假设你打算切换到多任务模型,可以先做1分钟语文,再切换到数学作业,做1分钟,再切换到英语,以此类推,只要切换速度足够快,这种方式就和单核CPU执行多任务是一样的了,以幼儿园小朋友的眼光来看,你就正在同时写5科作业。
但是,切换作业是有代价的,比如从语文切到数学,要先收拾桌子上的语文书本、钢笔(这叫保存现场),然后,打开数学课本、找出圆规直尺(这叫准备新环境),才能开始做数学作业。操作系统在切换进程或者线程时也是一样的,它需要先保存当前执行的现场环境(CPU寄存器状态、内存页等),然后,把新任务的执行环境准备好(恢复上次的寄存器状态,切换内存页等),才能开始执行。这个切换过程虽然很快,但是也需要耗费时间。如果有几千个任务同时进行,操作系统可能就主要忙着切换任务,根本没有多少时间去执行任务了,这种情况最常见的就是硬盘狂响,点窗口无反应,系统处于假死状态。
所以,多任务一旦多到一个限度,就会消耗掉系统所有的资源,结果效率急剧下降,所有任务都做不好。
计算密集型 vs. IO密集型
是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。
计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。
这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。
第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。
对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。
IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。
对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
异步IO
考虑到CPU和IO之间巨大的速度差异,一个任务在执行的过程中大部分时间都在等待IO操作,单进程单线程模型会导致别的任务无法并行执行,
因此,我们才需要多进程模型或者多线程模型来支持多任务并发执行。
现代操作系统对IO操作已经做了巨大的改进,最大的特点就是支持异步IO。
如果充分利用操作系统提供的异步IO支持,就可以用单进程单线程模型来执行多任务,这种全新的模型称为事件驱动模型,
Nginx就是支持异步IO的Web服务器,它在单核CPU上采用单进程模型就可以高效地支持多任务。
在多核CPU上,可以运行多个进程(数量与CPU核心数相同),充分利用多核CPU。
由于系统总的进程数量十分有限,因此操作系统调度非常高效。用异步IO编程模型来实现多任务是一个主要的趋势。