VD6283TX环境光传感器(2)----移植闪烁频率代码

VD6283TX环境光传感器----2.移植闪烁频率代码

  • 闪烁定义
  • 视频教学
  • 样品申请
  • 源码下载
  • 参考代码
  • 硬件准备
  • 开发板设置
  • 生成STM32CUBEMX
  • 串口配置
  • IIC配置
  • X-CUBE-ALS
  • ADC使用定时器触发采样
  • KEIL配置
  • FFT代码配置
  • app_x-cube-als.c
  • 需要添加函数
  • 演示结果

闪烁定义

光学闪烁是指人造光源产生的光的脉冲或波动现象。在低频下,闪烁是肉眼可见的,即人眼能够感知到光的闪动。然而,当频率超过100 Hz时,虽然闪烁对人眼不再可见,它仍然存在并可能对人体产生一定影响。大部分人造光源,如家庭和商业办公室使用的,会在接入电网时产生闪烁,其频率通常由所在国家的电力频率决定,一般为50 Hz或60 Hz。由于电流在光源中的交替流动,这些光源会在50 Hz或60 Hz的电网下产生100 Hz或120 Hz的闪烁频率。为了消除这种可见闪烁并减少其对人体的潜在影响,许多LED灯采用了脉冲宽度调制(PWM)的调光方法,从而实现更高的闪烁频率。VD6283传感器能够检测高达2 kHz的光闪烁频率,从而为光质量的监测提供精准数据。
最近在弄ST的课程,需要样片的可以加群申请:615061293 。

在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1pt4y1f7eh/

VD6283TX环境光传感器(2)----移植闪烁频率代码

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

源码下载

https://download.csdn.net/download/qq_24312945/88671493

参考代码

https://www.st.com/zh/ecosystems/x-cube-als.html
在下面目录下有对应的程序。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第1张图片

这个应用程序演示了如何使用X-NUCLEO-6283A1扩展板,通过UART从连接的STM32 Nucleo板向PC传输数据,并在通用应用程序(如Tera Term)上显示闪烁频率提取结果。一旦建立连接,用户可以使用超级终端查看来自板载光传感器的数据。该应用程序提供实时数值,并允许用户通过键盘更改增益、曝光时间和采样率。这个示例只能在软件包安装文件夹中访问。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第2张图片

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板:
最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第3张图片

开发板设置

在手册种给出了,闪烁手册可以查看AN5639,资料链接如下。
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/9f/7e/8c/ce/36/85/4c/08/DM00776948/files/DM00776948.pdf/jcr:content/translations/en.DM00776948.pdf

在这里插入图片描述

在AN5639手册中,需要对SB3进行连接。

在这里插入图片描述
同时GPIO2需要接到MCU的ADC通道中。

在这里插入图片描述

查看X-NUCLEO-6283A1手册,可以看到VD6283TX的GPIO2连接到MCU的ADC端口0-2。

在这里插入图片描述

在本章使用的测试板中,AFLR_1V8接入到MCU的PC0接口。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第4张图片

需要将AFLR_1V8接到开发板的A0端口中。
在这里插入图片描述

生成STM32CUBEMX

用STM32CUBEMX生成例程,这里使用MCU为STM32WB55RG。
配置时钟树,配置时钟为32M。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第5张图片

串口配置

查看原理图,PB6和PB7设置为开发板的串口。

VD6283TX环境光传感器(2)----移植闪烁频率代码_第6张图片

配置串口。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第7张图片

IIC配置

VD6283TX环境光传感器(2)----移植闪烁频率代码_第8张图片

VD6283TX环境光传感器(2)----移植闪烁频率代码_第9张图片

配置IIC为快速模式,速度为400k。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第10张图片

X-CUBE-ALS

VD6283TX环境光传感器(2)----移植闪烁频率代码_第11张图片

ADC使用定时器触发采样

在app_als_adc_utils.c中,定义了ADC使用的频率,为8000Hz。
在这里插入图片描述

定时器的arr设置为4000-1,那么定时器频率为8000Hz。
Trigger Event Selection :update event 定时器自动更新。

VD6283TX环境光传感器(2)----移植闪烁频率代码_第12张图片

配置ADC检测VD6283TX的GPIO2管脚的AD值。
设置触发方式为外部触发,选择刚刚配置的TIM2,触发方式为上升沿触发。

VD6283TX环境光传感器(2)----移植闪烁频率代码_第13张图片

开启中断。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第14张图片

KEIL配置

在这里插入图片描述

FFT代码配置

arm_cortexM4lf_math.lib 库包含了一系列数学函数,特别是适用于基于Cortex-M4和Cortex-M7处理器的浮点运算单元的优化数学例程。这些例程涵盖了常见的数学运算,如信号处理、滤波、变换等。
arm_math.h 这个头文件包含了CMSIS-DSP库的函数声明、宏定义和结构体定义等,可以通过包含这个头文件,使用库中提供的各种数学函数,包括信号处理、滤波、变换等。
添加arm_cortexM4lf_math.lib文件。
在这里插入图片描述
在这里插入图片描述

同时导入arm_math.h文件。
在这里插入图片描述

app_x-cube-als.c

由于需要进行FFT算法,所以需要添加对应数学头文件。

#define ARM_MATH_CM4
#include "arm_math.h"
#include "app_als_adc_utils.h"

添加对应的函数申明。


#define FLK_CHANNEL	(5U)

/*
 * Increasing the value of the FLK_DATA_SIZE symbol will increase
 * processing time, flicker accuracy and memory footprint
 */
#define FLK_DATA_SIZE (1024U)
#define FFT_SIZE (FLK_DATA_SIZE)

/* Private variables ---------------------------------------------------------*/
static uint8_t is_quit_requested;
static uint8_t is_autogain_requested;
static int16_t flk_data[FLK_DATA_SIZE];
volatile uint8_t ALS_EventDetected;

/*
 * The FFT of a real N-point sequence has even symmetry in the frequency domain.
 * The second half of the data equals the conjugate of the first half flipped in frequency.
 * Looking at the data, we see that we can uniquely represent the FFT using only N/2 complex numbers.
 * These are packed into the output array in alternating real and imaginary components:
 * X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ... real[(N/2)-1], imag[(N/2)-1 }
 */
static arm_rfft_fast_instance_f32 instance_fft;
static float32_t fft_in[FLK_DATA_SIZE];
static float32_t fft_out_tmp[FFT_SIZE];
static float32_t fft_out[FFT_SIZE/2];




/*
 * The FFT of a real N-point sequence has even symmetry in the frequency domain.
 * The second half of the data equals the conjugate of the first half flipped in frequency.
 * Looking at the data, we see that we can uniquely represent the FFT using only N/2 complex numbers.
 * These are packed into the output array in alternating real and imaginary components:
 * X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ... real[(N/2)-1], imag[(N/2)-1 }
 */
static arm_rfft_fast_instance_f32 instance_fft;
 
 
static void MX_VD6283A1_AnalogFlicker_Process(void); 

static float32_t complex_abs(float32_t real, float32_t complex);
static void init_fft(arm_rfft_fast_instance_f32 *instance, uint32_t size);
static void perform_fft(arm_rfft_fast_instance_f32 *instance, int16_t *data, float32_t *ffti, float32_t *ffto, uint32_t size);
static void find_flk_freq(uint32_t fs, float32_t *ffto, uint32_t *freq, uint8_t skip_dc, uint32_t size);


static int32_t flicker_autogain(uint8_t Instance, uint32_t *pAppliedGain, uint32_t timeoutMs);


static void display_gain(uint32_t gain);

在MX_VD6283A1_LuxCCT_Init()函数中添加init_fft快速傅里叶变换初始化。
在这里插入图片描述

static void MX_VD6283A1_LuxCCT_Init(void)
{
  /* Initialize Virtual COM Port */
  BSP_COM_Init(COM1);

  printf("VD6283TX Lux / CCT Example\n\n");
  display_commands_banner();

    /* initialize ARM FFT library */
    init_fft(&instance_fft, FFT_SIZE);
	
  status = VD6283A1_LIGHT_SENSOR_Init(LIGHT_SENSOR_INSTANCE_0);

  if (status)
  {
    printf("VD6283A1_LIGHT_SENSOR_Init failed\n");
    while(1);
  }
}

初始化完毕之后,添加频率获取函数。

static void MX_VD6283A1_AnalogFlicker_Process(void)
{
    uint32_t fs; /* sampling frequency */
    uint32_t pos = 0; 
    uint32_t flk_freq = 0;
    uint32_t index;

    uint32_t current_gain;
    uint32_t current_exposure;

    /* initialize exposure time */
    VD6283A1_LIGHT_SENSOR_SetExposureTime(LIGHT_SENSOR_INSTANCE_0, 100000);
    VD6283A1_LIGHT_SENSOR_GetExposureTime(LIGHT_SENSOR_INSTANCE_0, &current_exposure);
    printf("Exposure set to %lu us\n", (unsigned long)current_exposure);

    /* initialize gain */
    flicker_autogain(LIGHT_SENSOR_INSTANCE_0, &current_gain, 1);
    printf("Channel %u gain set to", FLK_CHANNEL);
    display_gain(current_gain);

    status = als_adc_start(&fs);

    if (status)
    {
        printf("ADC Start failed\n");
        while (1);
    }

    VD6283A1_LIGHT_SENSOR_StartFlicker(LIGHT_SENSOR_INSTANCE_0, FLK_CHANNEL, LIGHT_SENSOR_FLICKER_ANALOG);

    while (!is_quit_requested)
    {
        status = als_adc_get_frame(&flk_data[pos], &index);

        /* fill the ADC frame buffer */
        if (status == 0)
        {
            pos += ADC_FRAME_SIZE;
        }

        /* if the ADC frame buffer is full, then process it */
        if (pos == FLK_DATA_SIZE)
        {
            perform_fft(&instance_fft, flk_data, fft_in, fft_out, FFT_SIZE);
            find_flk_freq(fs, fft_out, &flk_freq, 1, FFT_SIZE);
            pos = 0; /* reset position index */

            printf("Flicker freq: %4lu Hz\r", (unsigned long)flk_freq);
            fflush(stdout);

            if (is_autogain_requested == 1)
            {
              VD6283A1_LIGHT_SENSOR_StopFlicker(LIGHT_SENSOR_INSTANCE_0);

              flicker_autogain(LIGHT_SENSOR_INSTANCE_0, &current_gain, 1);
              printf("Channel %u gain set to", FLK_CHANNEL);
              display_gain(current_gain);

              VD6283A1_LIGHT_SENSOR_StartFlicker(LIGHT_SENSOR_INSTANCE_0, FLK_CHANNEL, LIGHT_SENSOR_FLICKER_ANALOG);
              is_autogain_requested = 0;
            }
        }

        handle_cmd(get_key());
    }

    als_adc_stop();

    VD6283A1_LIGHT_SENSOR_StopFlicker(LIGHT_SENSOR_INSTANCE_0);
    VD6283A1_LIGHT_SENSOR_DeInit(LIGHT_SENSOR_INSTANCE_0);

    printf("Quitting the demo...\n");
    while (1);
}

在MX_X_CUBE_ALS_Process函数中开启频率获取函数,关闭光强获取函数MX_VD6283A1_LuxCCT_Process。
在这里插入图片描述

添加增益设置函数。

/*
 * @brief find and apply appropriate gain value depending on saturation value
 * @warning this function mustn't be called when a capture is ongoing
 */
static int32_t flicker_autogain(uint8_t Instance, uint32_t *pAppliedGain, uint32_t timeoutMs)
{
  int32_t res;
  uint8_t i, j;
  uint8_t idx = 7; /* start with mid-table value */
  const uint8_t sat_limit = 2;
  uint32_t saturation;

  /* duplicate 0x42AB to avoid 100x and keep multiples of 2 for array size */
  const uint16_t Gains[] = {
    0x42AB, 0x42AB, 0x3200, 0x2154, 0x1900, 0x10AB, 0x0A00, 0x0723,
    0x0500, 0x0354, 0x0280, 0x01AB, 0x0140, 0x0100, 0x00D4, 0x00B5
  };

  /* clip timeout value */
  timeoutMs = timeoutMs == 0 ? 1 : timeoutMs;
  timeoutMs = timeoutMs >= 100 ? 100 : timeoutMs;

  for (i = 0; i <= 3; i++)
  {
    VD6283A1_LIGHT_SENSOR_SetGain(Instance, FLK_CHANNEL, Gains[idx]);
    VD6283A1_LIGHT_SENSOR_GetGain(Instance, FLK_CHANNEL, pAppliedGain);

    res = VD6283A1_LIGHT_SENSOR_StartFlicker(Instance, FLK_CHANNEL, LIGHT_SENSOR_FLICKER_ANALOG);
    
    if (res)
      return res;

    /* read saturation value each ms so we can exit early if saturation detected */
    for (j = 0; j < timeoutMs; j++)
    {
      HAL_Delay(1);

      res = VD6283A1_LIGHT_SENSOR_GetSaturation(Instance, &saturation);

      if (res)
        return res;
      if (saturation > sat_limit)
        break;
    }

    res = VD6283A1_LIGHT_SENSOR_StopFlicker(Instance);
    
    if (res)
      return res;

    /* update index to next value */
    if (i)
      idx += saturation > sat_limit ? 1 << (i - 1) : -(1 << (i - 1));
    else if (saturation > sat_limit)
      idx++;
  }

  /* clip index if it reaches max value */
  if (idx > 15) 
    idx = 15;

  VD6283A1_LIGHT_SENSOR_SetGain(Instance, FLK_CHANNEL, Gains[idx]);
  res = VD6283A1_LIGHT_SENSOR_GetGain(Instance, FLK_CHANNEL, pAppliedGain);

  return res;
}

在下方添加函数的定义。

/*
 * @brief initilize arm rfft library
 */
static void init_fft(arm_rfft_fast_instance_f32 *instance, uint32_t size)
{
  arm_rfft_fast_init_f32(instance, size);
}

打印增益函数。

/*
 * @brief normalize, convert and dislay gain 
 */
static void display_gain(uint32_t gain)
{
    uint32_t g = (gain * 100) / 256;

    printf(" %3lu.%02lu\n", (unsigned long)g / 100, (unsigned long)(g % 100));
}

执行FFT。

/*
 * @brief perform fft on the input buffer using arm rfft library
 */
static void perform_fft(arm_rfft_fast_instance_f32 *instance, int16_t *flk, float32_t *ffti, float32_t *ffto, uint32_t size)
{
    uint32_t i;
    uint32_t index = 0;

    /* copy the ADC sampled signal into the fft input buffer
     * this allows to convert the data from int16_t to float32_t */
    for (i = 0; i < size; i++)
    {
        ffti[i] = flk[i];
    }

    /* Perform the FFT on the input buffer:
     * results are packed in a way so that even indexes contain real values
     * and odd indexes contain the complex value of each bin.
     * Therefore the fft_output array contains FFT_SIZE / 2 bins */
    arm_rfft_fast_f32(instance, ffti, fft_out_tmp, 0);

    /* Calculate the magnitude for each bin from the temp fft output buffer */
    for (i = 0; i < size; i += 2)
    {
        ffto[index] = complex_abs(fft_out_tmp[i], fft_out_tmp[i+1]);
        if (ffto[index] < 0) ffto[index] = 0;
        index++;
    }
}

查找峰值频率值。

/*
 * @brief find peak frequency value
 */
static void find_flk_freq(uint32_t fs, float32_t *ffto, uint32_t *freq, uint8_t skip_dc, uint32_t size)
{
    uint32_t i;
    uint32_t res;
    uint32_t index_max = 0;
    uint32_t limit = size / 2;

    float32_t max_value = -1;

    /* do not take account of the DC value if the flag skip_dc is set */
    skip_dc ? (i = 1) : (i = 0);

    /* run through the output array to detect the peak */
    for (; i < limit; i++)
    {
        if (ffto[i] > max_value)
        {
            index_max = i;
            max_value = ffto[i];
        }
    }

    /* convert index of the bin into frequency */
    res = (index_max * fs) / size;

    /* return the result if the pointer is valid */
    if (freq)
    {
        *freq = res;
    }
}

计算一个复数的绝对值。

/*
 * @brief compute absolute value of a complex number
 */
static float32_t complex_abs(float32_t real, float32_t complex)
{
  float32_t res;

  arm_sqrt_f32(real * real + complex * complex, &res);

  return res;
}

需要添加函数

arm_cortexM4lf_math.lib 库包含了一系列数学函数,特别是适用于基于Cortex-M4和Cortex-M7处理器的浮点运算单元的优化数学例程。这些例程涵盖了常见的数学运算,如信号处理、滤波、变换等。
arm_math.h 这个头文件包含了CMSIS-DSP库的函数声明、宏定义和结构体定义等,可以通过包含这个头文件,使用库中提供的各种数学函数,包括信号处理、滤波、变换等。
app_als_adc_utils.c功能主要包括启动和停止ADC采样,获取采样数据,ADC采样速度设置,以及处理相关的硬件中断。
app_als_adc_utils.h是app_als_adc_utils.c对应头文件。

演示结果

在1K光源下的测试情况。
VD6283TX环境光传感器(2)----移植闪烁频率代码_第15张图片

你可能感兴趣的:(传感器,stm32cube,单片机,stm32cubemx,VD6283TX,灯光频率,光强传感器,色温,mems)