堆排序
- Runtime: 84 ms, faster than 69.47%
- Memory Usage: 37.7 MB, less than 47.67%
时间复杂度
空间复杂度
var findKthLargest = function(nums, k) {
let len = nums.length
let mid = Math.floor(len/2)
for(let i = mid; i-- ; i >= 0) {
heapSort(nums, i, len)
}
for(let i = len - 1; i > len - k; i--) {
swap(nums, 0, i)
heapSort(nums, 0, i)
}
return nums[0]
};
var swap = function(nums, a, b) {
let temp = nums[a]
nums[a] = nums[b]
nums[b] = temp
}
var heapSort = function(nums, index, boundary) {
let max = index
let left = 2 * index + 1
let right = 2 * index + 2
if(left < boundary && nums[left] > nums[max]) max = left
if(right < boundary && nums[right] > nums[max]) max = right
if(max > index) {
swap(nums, max, index)
heapSort(nums, max, boundary)
}
}
部分排序实现方法
期望为线性时间的选择算法,将输入数组进行递归划分,快速排序会处理递归的两边,randomized-select只处理划分的一边,这一差异会在性能分析中体现出来,快排 O(nlogn),随机化排序O(n)
- Runtime: 104 ms, faster than 43.58%
- Memory Usage: 37.8 MB, less than 45.16%
时间复杂度
空间复杂度
var findKthLargest = function(nums, k) {
return partQuickSort(nums, 0, nums.length - 1, k - 1)
};
var partition = function(nums, start, end) {
let flag = nums[end]
let index = start
for(let i = start; i < end; i++) {
if(nums[i] > flag) {
swap(nums, index, i)
//[nums[index], nums[i]] = [nums[i], nums[index]]
index++
}
}
swap(nums, index, end)
//[nums[index], nums[end]] = [nums[end], nums[index]]
return index
}
var partQuickSort = function(nums, start, end, k) {
let p = partition(nums, start, end)
if(p === k) return nums[p]
return p < k ? partQuickSort(nums, p + 1, end, k) : partQuickSort(nums, start, p - 1, k)
}
var swap = function(nums, m, n){
let temp = nums[m]
nums[m] = nums[n]
nums[n] = temp
}
部分快排
- Runtime: 76 ms, faster than 94.62%
- Memory Usage: 39.2 MB, less than 80.84%
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
var findKthLargest = function(nums, k) {
let len = nums.length
return partQuickSort(nums, 0, len - 1, len - k)
};
var partQuickSort = function(nums, i, j, k) {
if(j - i < 1) return nums[i]
let flag = nums[i]
let start = i + 1
let end = j
while(start <= end) {
if(nums[start] <= flag) {
start++
} else {
swap(nums, start, end)
end--
}
}
swap(nums, i, start - 1)
if(k === start - 1) return nums[k]
return k > start - 1 ? partQuickSort(nums, start, j, k) : partQuickSort(nums, i, start - 2, k)
}
var swap = function(nums, i, j) {
let temp = nums[i]
nums[i] = nums[j]
nums[j] = temp
}
奇奇怪怪的方法
- Runtime: 176 ms, faster than 12.23%
- Memory Usage: 37.8 MB, less than 43.73%
var findKthLargest = function(nums, k) {
let len = nums.length
for(let i = 0; i < k - 1; i++) {
let max = Math.max.apply(this, nums)
let index = nums.indexOf(max)
nums.splice(index, 1)
}
return Math.max.apply(this, nums)
};
快速排序实现
- Runtime: 1076 ms, faster than 5.09%
- Memory Usage: 172.1 MB, less than 5.04%
var findKthLargest = function(nums, k) {
nums = quickSort(nums)
return nums[k - 1]
};
var quickSort = function(nums) {
if(nums.length < 2) return nums
let flag = nums.pop()
let less = quickSort(nums.filter(item => item < flag))
let more = quickSort(nums.filter(item => item >= flag))
return more.concat([flag], less)
}
基于快速排序进行改进
- Runtime: 104 ms, faster than 34.25%
- Memory Usage: 39.5 MB, less than 54.93%
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
var findKthLargest = function(nums, k) {
let len = nums.length
let res = partSort(nums, 0, len - 1, len - k)
if(res === undefined) res = nums[len - k]
return res
};
function partSort(nums, i, j, index) {
if(j - i < 1) return
let flag = nums[i]
let start = i + 1
let end = j
while(start <= end ) {
if(nums[start] <= flag) {
start++
} else {
swap(nums, start, end)
end--
}
}
swap(nums, i, start - 1)
if(start - 1 === index) {
return nums[start - 1]
}
// debugger
if(start - 2 < j && start - 2 > i) partSort(nums, i, start - 2, index)
if (start < j)partSort(nums, start, j, index)
}
var swap = function(nums, i, j) {
let temp = nums[i]
nums[i] = nums[j]
nums[j] = temp
}