- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- js递归树结构,返回符合条件的子集
啃火龙果的兔子
开发DEMOjavascript开发语言ecmascript
JavaScript递归遍历树结构返回符合条件的子集下面我将介绍几种在JavaScript中递归遍历树结构并返回符合条件的子集的方法。方法一:使用递归函数返回符合条件的子树functionfindSubtree(tree,condition){if(condition(tree)){returntree;}if(tree.children&&tree.children.length){for(le
- 视频断点续播全栈实现:基于HTML5前端与Spring Boot后端
独立开发者阿乐
原创前端音视频RESTAPIAPISpringBootJavaScriptvideo元素
文章目录视频断点续播功能实现方案核心思路前端实现HTML结构JavaScript实现SpringBoot后端实现1.依赖配置(pom.xml)2.实体类3.存储库接口4.服务层5.控制器实现要点视频断点续播功能构思图流程说明用户交互:前端核心功能:后端处理:数据存储:我的个人网站:乐乐主题创作室视频断点续播功能实现方案核心思路实现视频断点续播需要前后端配合,主要包括:前端记录播放进度后端存储进度信
- vue中父子组件通过prop传递函数,子组件调用函数本质
咔咔咔索菲斯
vue.js前端javascript
在Vue中,通过prop将函数从父组件传递到子组件后,子组件调用的本质是父组件上的原始函数,而非新函数。具体原理如下:1.函数传递的本质:引用传递-JavaScript中,函数作为引用类型,传递的是内存地址(引用)而非副本。-父组件通过prop传递函数时,实际是将函数的引用传给子组件,两者指向同一函数对象。2.示例验证exportdefault{methods:{parentFunction(){
- 跨届资源汇聚地:校友平台开启终身学习与职业互助新模式
IDZSY0430
学习大数据运维开发用户运营流量运营
引言在知识经济时代,“校友”二字早已超越单纯的情感符号,演变为蕴含巨大潜能的资源网络。传统校友关系受限于时空隔阂与信息壁垒,难以实现深度互动与资源共享。如今,依托智能化校友平台,一个打破届别、跨越地域的终身学习与职业互助新生态正加速形成,成为驱动个体成长与社群繁荣的核心引擎。一、资源整合:构建校友生态系统的数字基石校友平台的底层逻辑在于系统性整合碎片化资源,为跨届协作奠定量化基础:动态校友数据库平
- 【学习】《算法图解》第十章学习笔记:贪婪算法
程序员
一、贪婪算法概述贪婪算法(GreedyAlgorithm)是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。贪婪算法不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择。(一)算法适用场景贪婪算法适用于具有"贪心选择性质"的问题,即局部最优选择能导致全局最优解的问题。主要应用于:需要求解最优化问题问题具有贪心选择性质问题具有最优子结构性质(二
- Java多线程编程中容易混淆的Thread.sleep()与Object.wait()深度解析
前言在Java多线程编程的学习和实践过程中,我发现很多初学者(包括曾经的我)经常混淆Thread.sleep()和Object.wait()这两个方法的使用场景。本文将通过代码示例、时序图和内存变化图,深入分析这两个方法的区别,并分享我在实际项目中使用它们解决线程同步问题的经验。一、基本概念对比1.Thread.sleep()//使当前线程暂停执行指定的毫秒数Thread.sleep(1000);
- 学习以任务为中心的潜动作,随地采取行动
三谷秋水
计算机视觉智能体大模型计算机视觉语言模型机器人人工智能深度学习
25年5月来自香港大学、OpenDriveLab和智元机器人的论文“LearningtoActAnywherewithTask-centricLatentActions”。通用机器人应该在各种环境中高效运行。然而,大多数现有方法严重依赖于扩展动作标注数据来增强其能力。因此,它们通常局限于单一的物理规范,难以学习跨不同具身和环境的可迁移知识。为了突破这些限制,UniVLA,是一个用于学习跨具身视觉-
- 剑指offer第二版学习笔记(一)前言
虚空来袭
剑指offer第二版剑指Offer第2版
久闻剑指offer大名,如今我也到了要找工作的时候了,趁现在还有时间,多学一点是一点,在此开一个分集记录一下在学习剑指offer过程中的一些经验和想法。注:使用的书籍是剑指offer第二版。本期内容书籍内容书籍内容简介结语本期仅写了书籍内容介绍,作者还总结了书籍特色、对创作过程中家人、朋友等进行了感谢,我略去了这些部分。下期应该是接着看第一部分。
- 【Transformer论文】通过蒙面多模态聚类预测学习视听语音表示
Wwwilling
推荐系统论文阅读Transformer系列论文transformer聚类多模态
文献题目:LEARNINGAUDIO-VISUALSPEECHREPRESENTATIONBYMASKEDMULTIMODALCLUSTERPREDICTION发表时间:2022发表期刊:ICLR摘要语音的视频记录包含相关的音频和视觉信息,为从说话者的嘴唇运动和产生的声音中学习语音表示提供了强大的信号。我们介绍了视听隐藏单元BERT(AV-HuBERT),这是一种用于视听语音的自我监督表示学习框架
- 三分钟使用github的技巧
小白学CS
安装/使用教程运维githubgit
文章目录一、GitHub搜索技巧——找开发者二、GitHub搜索技巧——找项目三、in关键字限制搜索范围四、stars或fork数量去查找一、GitHub搜索技巧——找开发者搜索条件备注location:location:china,匹配用户填写的地址在chinalanguage:language:javascript,匹配开发语言为javascript的开发者followers:follower
- 对比2个数据库:google Cloud Firestore 和 supabase
waterHBO
数据库云端数据库
帮我对比一下:CloudFirestore和supabase尤其是,是否免费,注册难度,是否需要银行卡注册,我没有国外的银行卡(我在中国大陆)。以及免费额度是多少,上手难度,即,学习曲线因为我平时一般是写小项目,我的数据库一般使用json或是sqlite3第1个回答好问题!下面是CloudFirestore(Firebase)和Supabase的全面对比,特别关注了中国大陆用户关心的注册、费用、学
- 【Spring AI】 1接入 Ollama实践
占星安啦
springaijavaspringaiollama
SpringAI接入Ollama实践学习笔记Ollama官方文档SpringAI快速开始SpringAIOllama集成文档1.pom.xml依赖配置前置条件:请确保你已安装好Java17+、Maven、Ollama,并已下载好所需大模型。在pom.xml中添加SpringAI及Ollama相关依赖:org.springframework.bootspring-boot-starter-webor
- AWS Cognito项目实战指南:集成用户管理与自定义电子邮件功能
一一MIO一一
本文还有配套的精品资源,点击获取简介:本项目涉及利用AWSCognito服务,创建一个基于云端的用户身份验证和管理应用。通过集成Cognito用户池,项目支持社交登录和自定义用户身份保护,同时涉及通过AWSLambda发送自定义电子邮件通知,增强用户体验。项目采用TypeScript编程语言,提升代码的可维护性和可读性,为开发者提供一个学习AWS无服务器认证解决方案的实践案例。1.AWSCogni
- java+vue+SpringBoo智慧旅游系统(程序+数据库+报告+部署教程+答辩指导)
源代码+数据库+LW文档(1万字以上)+开题报告+答辩稿ppt+部署教程+代码讲解+代码时间修改工具技术实现开发语言:后端:Java前端:vue框架:springboot数据库:mysql开发工具JDK版本:JDK1.8数据库:mysql数据库工具:Navicat开发软件:idea主要角色及功能介绍本次系统的用例图做出了十分明确的功能划分,在设计时可以有很好的设计思路进行设计和延展。(1)管理员用
- 机器学习在智能仓储中的应用:库存管理与物流优化
Blossom.118
机器学习与人工智能机器学习人工智能深度学习机器人sklearntensorflowcnn
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。随着电子商务的蓬勃发展,仓储和物流行业面临着前所未有的挑战和机遇。智能仓储通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从货物入库到出库的全流程
- 使用matplotlib绘制散点图、柱状图和饼状图-学习篇
Zorione
Pythonmatplotlib学习python
一、散点图Python代码如下:num_points=100x=np.random.rand(num_points)#x点位随机y=np.random.rand(num_points)#y点位随机colors=np.random.rand(num_points)#颜色随机sizes=1000*np.random.rand(num_points)#大小随机alphas=np.random.rand(
- 【自然语言处理-NLP】文本预处理技术
云博士的AI课堂
哈佛博后带你玩转机器学习深度学习自然语言处理人工智能NLP深度学习数据预处理NLP数据预处理机器学习
以下内容将从基本概念到实用代码分步骤、分场景地详细介绍NLP常见文本预处理方法及其背后的思想。如果无法从外部导入数据,我们会模拟一份简易文本数据(如字符串列表),并在此基础上演示预处理代码及详细解释,确保在常规Python环境下可以运行。一、文本预处理的常见需求和作用在自然语言处理(NLP)任务(如机器学习、深度学习、大模型开发)中,原始文本数据通常会包含各种噪声,例如:多余的空格、换行符、特殊符
- java数组解析_实例讲解Java数组解构
关然
java数组解析
数组是在程序设计中,为了处理方便,把具有相同类型的若干元素按有序的形式组织起来的一种形式。我们可以把数组看成是用于储存多个相同类型数据的集合,我们在需要用到数组中的一部分数据时,就需要用到数组解构,获得相应的数据。本文我们就一起来学习Java数组解构的相关知识。1.简单解构constnumbers=['a','b','c'];//获取前两项const[n1,n2]=numbers;console.
- 深度学习之基于Pytorch卷积神经网络人民币面值识别
Q1744828575
pythonpytorchplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景在日常生活和商业活动中,人民币面值识别技术具有重要的应用价值。传统的面值识别方法,如基于模板匹配或特征工程的方法,在面对复杂多变的图像环境时,往往难以达到理想的识别效果。随着深度学习技术的兴起,特别是卷积神经网络(ConvolutionalNeuralNetwo
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- 《三生原理》如何改进阴阳参数冷启动?
葫三生
三生学派人工智能平面线性代数概率论算法
AI辅助创作:《三生原理》通过动态参数耦合与跨域迁移学习优化阴阳参数冷启动问题,显著降低15%的初始化成本并提升收敛效率,具体技术路径如下:一、动态参数化生成引擎阴阳本体的递归约束基于素数基底(阴元=2,阳元=3)构建参数化公式:p=3(2n+1)+2(2n+m+1)(m∈{0,1,2,3,4})通过约束参数mm的取值空间(对应五行属性),压缩冷启动搜索范围在华为高斯实验室的量子加密
- 利用视觉-语言模型搭建机器人灵巧操作的支架
三谷秋水
智能体大模型计算机视觉语言模型机器人人工智能计算机视觉机器学习
25年6月来自斯坦福和德国卡尔斯鲁厄理工的论文“ScaffoldingDexterousManipulationwithVision-LanguageModels”。灵巧机械手对于执行复杂的操作任务至关重要,但由于演示收集和高维控制的挑战,其训练仍然困难重重。虽然强化学习(RL)可以通过在模拟中积累经验来缓解数据瓶颈,但它通常依赖于精心设计的、针对特定任务的奖励函数,这阻碍了其可扩展性和泛化能力。
- 手机射频功放测试学习(二)——手机线性功放的静态电流和小信号(S-Parameter)测试
零壹电子
手机射频功放测试合集学习S参数读取
目录一、概要二、LPA的电流测试1、LPA的泄漏电流测试手动测试步骤如下:自动化测试:2、LPA的静态电流测试手动测试步骤如下:自动化测试:三、LPA的S-Parameter测试1、矢量网络分析仪校准2、LPA的S参数手动测试步骤:3、LPA的S参数自动测试步骤:四、结语一、概要诚如上文介绍,实验室中进行手机线性功放测试,第一步是看静态电流,第二步再测试小信号(S-Parameter)特性;步骤是
- Linux——搭建嵌入式Linux开发环境步骤总结(虚拟机、Ubuntu、JDK、库文件、GCC)
Winter_world
搭建嵌入式Linux开发环境虚拟机Ubuntu安装JDK安装库文件GCC版本更新
目录0前言1主机软件环境2Linux系统下安装编译组件3Linux系统下安装库文件和JDK0前言回顾一直以来做的嵌入式项目方向,从如ST的单片机裸机开发,SOC开发,到STM32裸机开发,基于uCOSII的开发,基于freeRTOS的开发等,在实时操作系统层面的应用开发停留了一段时间了,一直想再突破下自我,去年做了一个基于工控机方案的Linux系统应用开发项目,对于Linux一直没有系统性的学习整
- 【机器学习第四期(Python)】LightGBM 方法原理详解
WW、forever
机器学习原理及代码实现机器学习python人工智能
LightGBM概述一、LightGBM简介二、LightGBM原理详解⚙️核心原理LightGBM的主要特点三、LightGBM实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考LightGBM是由微软开源的基于梯度提升框架(GBDT)的机器学习算法,专为高性能、高效率设计,适用于大规模数据处理任务。它在准确率、训练速度和资源使用上都优于传统GBDT实现(如XGBoost)
- 华为HDC 2025:一场开发者的技术盛宴与灵感之旅
前言作为一名开发者,参加华为HDC大会就像是一场朝圣之旅。每年这个时候,全球的开发者们都会汇聚一堂,分享最新的技术成果,探讨未来的趋势,而今年的HDC2025更是让我期待已久。这次大会不仅有华为最新技术的展示,还有各种实战案例和深度分享,对我来说,这是一次难得的学习和交流机会,更是面基各位好友的最佳机会。那么接下来就来分享一下三掌柜参加2025华为HDC大会的所见所感吧。初到会场:满满的科技感当我
- 【机器学习】机器学习的基本分类-监督学习-线性回归(Linear Regression)
IT古董
人工智能机器学习机器学习分类学习人工智能线性回归
线性回归是监督学习中的一种基础算法,用于解决回归问题。它通过拟合一条直线(或平面、高维超平面),来预测输出与输入变量之间的关系。1.线性回归的基本概念目标给定输入和对应的输出y,找到一个线性函数:其中:是权重(回归系数)。b是偏置(截距)。y是预测值。损失函数为了找到最佳的w和b,需要最小化预测值和真实值
- pytest学习和使用-pytest如何进行分布式测试?(pytest-xdist)
测试界晓晓
软件测试pytest学习分布式软件测试功能测试自动化测试程序人生
1什么是分布式测试?在进行本文之前,先了解些基础知识,什么是分布式测试?分布式测试:是指通过局域网和Internet,把分布于不同地点、独立完成特定功能的测试计算机连接起来,以达到测试资源共享、分散操作、集中管理、协同工作、负载均衡、测试过程监控等目的的计算机网络测试。通俗的讲:分布式测试就是活太多,一个人干费时间,那就让多个人一起干,节省了资源和时间。2为什么要进行分布式测试?2.1场景1:自动
- day45-Django RestFramework(drf)实战案例
生而自由爱而无畏
Pythondjangopython后端开发语言
1.6DjangoRestFramework(drf)实战案例1.需求请结合上述学习的drf知识开发简易版《抽屉新热榜》。其中包含的功能如下:注册输入:手机号、用户名、密码、确认密码。登录输入:手机号或用户名+密码注意:登录成功后给用户返回token,后续请求需要在url中携带token(有效期2周)我的话题-我的话题列表-创建话题-修改话题-删除话题(逻辑删除)我的资讯-创建资讯(5分钟创建一个
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。