大数据框架介绍

大数据学习必备三个框架Hadoop,Spark,Storm

大数据的主要特点为数据量大(Volume),数据类别复杂(Variety),数据处理速度快(Velocity)和数据真实性高(Veracity),合起来被称为4V。

大数据分析(Big Data Analysis):
大数据,表面上看就是大量复杂的数据,这些数据本身的价值并不高,但是对这些大量复杂的数据进行分析处理后,却能从中提炼出很有价值的信息。对大数据的分析,主要分为五个方面:可视化分析(Analytic Visualization)、数据挖掘算法(Date Mining Algorithms)、预测性分析能力(Predictive Analytic Capabilities)、语义引擎(Semantic Engines)和数据质量管理(Data Quality Management)。
可视化分析是普通消费者常常可以见到的一种大数据分析结果的表现形式,比如说百度制作的“百度地图春节人口迁徙大数据”就是典型的案例之一。可视化分析将大量复杂的数据自动转化成直观形象的图表,使其能够更加容易的被普通消费者所接受和理解。
数据挖掘算法是大数据分析的理论核心,其本质是一组根据算法事先定义好的数学公式,将收集到的数据作为参数变量带入其中,从而能够从大量复杂的数据中提取到有价值的信息。著名的“啤酒和尿布”的故事就是数据挖掘算法的经典案例。沃尔玛通过对啤酒和尿布购买数据的分析,挖掘出以前未知的两者间的联系,并利用这种联系,提升了商品的销量。亚马逊的推荐引擎和谷歌的广告系统都大量使用了数据挖掘算法。
预测性分析能力是大数据分析最重要的应用领域。从大量复杂的数据中挖掘出规律,建立起科学的事件模型,通过将新的数据带入模型,就可以预测未来的事件走向。预测性分析能力常常被应用在金融分析和科学研究领域,用于股票预测或气象预测等。
语义引擎是机器学习的成果之一。过去,计算机对用户输入内容的理解仅仅停留在字符阶段,不能很好的理解输入内容的意思,因此常常不能准确的了解用户的需求。通过对大量复杂的数据进行分析,让计算机从中自我学习,可以使计算机能够尽量精确的了解用户输入内容的意思,从而把握住用户的需求,提供更好的用户体验。苹果的Siri和谷歌的Google Now都采用了语义引擎。
数据质量管理是大数据在企业领域的重要应用。为了保证大数据分析结果的准确性,需要将大数据中不真实的数据剔除掉,保留最准确的数据。这就需要建立有效的数据质量管理系统,分析收集到的大量复杂的数据,挑选出真实有效的数据。

主流的三大分布式计算系统:Hadoop,Spark和Storm
讲Hadoop,Spark和Storm这三种分布式计算系统之前先提一下google的分布式计算系统,由于google的分布式计算系统没有开源,因此这里不做重点介绍。
2003年到2004年间,Google发表了MapReduce、GFS(Google File System)和BigTable三篇技术论文,提出了一套全新的分布式计算理论。MapReduce是分布式计算框架,GFS(Google File System)是分布式文件系统,BigTable是基于Google File System的数据存储系统,这三大组件组成了Google的分布式计算模型。Google的分布式计算模型相比于传统的分布式计算模型有三大优势:首先,它简化了传统的分布式计算理论,降低了技术实现的难度,可以进行实际的应用。其次,它可以应用在廉价的计算设备上,只需增加计算设备的数量就可以提升整体的计算能力,应用成本十分低廉。最后,它被Google应用在Google的计算中心,取得了很好的效果,有了实际应用的证明。
后来,各家互联网公司开始利用Google的分布式计算模型搭建自己的分布式计算系统,Google的这三篇论文也就成为了大数据时代的技术核心。

Hadoop:
Yahoo的工程师Doug Cutting和Mike Cafarella在2005年合作开发了分布式计算系统Hadoop。后来,Hadoop被贡献给了Apache基金会,成为了Apache基金会的开源项目。Hadoop采用MapReduce分布式计算框架,并根据GFS开发了HDFS分布式文件系统,根据BigTable开发了HBase数据存储系统。尽管和Google内部使用的分布式计算系统原理相同,但是Hadoop在运算速度上依然达不到Google论文中的标准。不过,Hadoop的开源特性使其成为分布式计算系统的事实上的国际标准。Yahoo,Facebook,Amazon以及国内的百度,阿里巴巴等众多互联网公司都以Hadoop为基础搭建自己的分布式计算系统。
开发应用语言支持:hadoop本身是用java写的,用其他语言开发的Hadoop应用大多数是使用Hadoop-Streaming来和框架对接的。 因为Streaming会fork一个java进程来读写Python/Perl/C++的stdin/stdout,开销会大一些。较大的任务、长期运行的任务,推荐使用Java。
Spark:
Spark也是Apache基金会的开源项目,它由加州大学伯克利分校的实验室开发,是另外一种重要的分布式计算系统。它在Hadoop的基础上进行了一些架构上的改良。Spark与Hadoop最大的不同点在于,Hadoop使用硬盘来存储数据,而Spark使用内存来存储数据,因此Spark可以提供超过Hadoop100倍的运算速度。但是,由于内存断电后会丢失数据,Spark不能用于处理需要长期保存的数据。
开发应用语言支持:Spark 同时支持Scala、Python、Java 三种应用程序API编程接口和编程方式, 考虑到大数据处理的特性,一般会优先使用Scala进行编程,其次是Python,最后才是Java。 无论使用Scala、Python还是Java编程程序都需要遵循Spark 编程模型,考虑对Spark平台支持的有力程度来说,Spark 对Scala语言的支持是最好的,因为它有最丰富的和最易用的编程接口。
Storm:
Storm是Twitter主推的分布式计算系统,它由BackType团队开发,是Apache基金会的孵化项目。它在Hadoop的基础上提供了实时运算的特性,可以实时的处理大数据流。不同于Hadoop和Spark,Storm不进行数据的收集和存储工作,它直接通过网络实时的接受数据并且实时的处理数据,然后直接通过网络实时的传回结果。案例:淘宝。
开发应用语言支持:核心逻辑是Clojure,其他还有PYTHON,JAVA

比较:
Hadoop擅长离线分析,实时是短项,storm用流数据处理技术很轻巧的突破瓶颈,正好弥补了hadoop的不足。由于有足够的成熟度和企业应用先例(例如相比于spark),storm前景看好。

你可能感兴趣的:(大数据框架介绍)