POJ 2225 / ZOJ 1438 / UVA 1438 Asteroids --三维凸包,求多面体重心

题意: 两个凸多面体,可以任意摆放,最多贴着,问他们重心的最短距离。

解法: 由于给出的是凸多面体,先构出两个三维凸包,再求其重心,求重心仿照求三角形重心的方式,然后再求两个多面体的重心到每个多面体的各个面的最短距离,然后最短距离相加即为答案,因为显然贴着最优。

求三角形重心见此: http://www.cnblogs.com/whatbeg/p/4234518.html

代码:(模板借鉴网上模板)

#include <iostream>

#include <cstdio>

#include <cstring>

#include <cstdlib>

#include <cmath>

#include <algorithm>

#include <string>

#include <vector>

#include <set>

#define Mod 1000000007

#define eps 1e-8

#define lll __int64

#define ll long long

using namespace std;

#define N 100007

#define MAXV 505



//三维点

struct pt{

    double x, y, z;

    pt(){}

    pt(double _x, double _y, double _z): x(_x), y(_y), z(_z){}

    pt operator - (const pt p1){return pt(x - p1.x, y - p1.y, z - p1.z);}

    pt operator * (pt p){return pt(y*p.z-z*p.y, z*p.x-x*p.z, x*p.y-y*p.x);}        //叉乘

    double operator ^ (pt p){return x*p.x+y*p.y+z*p.z;}                            //点乘

};



//pt operator - (const pt p,const pt p1){return pt(p.x - p1.x, p.y - p1.y, p.z - p1.z);}

//pt operator ** (pt p,pt p1){return pt(p.y*p1.z-p.z*p1.y, p.z*p1.x-p.x*p1.z, p.x*p1.y-p.y*p1.x);}        //叉乘

//double operator ^^ (pt p1,pt p){return p1.x*p.x+p1.y*p.y+p1.z*p.z;}



struct _3DCH{

    struct fac{

        int a, b, c;    //表示凸包一个面上三个点的编号

        bool ok;        //表示该面是否属于最终凸包中的面

    };



    int n;    //初始点数

    pt P[MAXV];    //初始点



    int cnt;    //凸包表面的三角形数

    fac F[MAXV*8]; //凸包表面的三角形



    int to[MAXV][MAXV];



    double vlen(pt a){return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);}    //向量长度

    double area(pt a, pt b, pt c){return vlen((b-a)*(c-a));}    //三角形面积*2

    double volume(pt a, pt b, pt c, pt d){return (b-a)*(c-a)^(d-a);}    //四面体有向体积*6



    //正:点在面同向

    double ptof(pt &p, fac &f){

        pt m = P[f.b]-P[f.a], n = P[f.c]-P[f.a], t = p-P[f.a];

        return (m * n) ^ t;

    }

    pt pvec(fac s) {

        pt k1 = (P[s.a]-P[s.b]), k2 = (P[s.b]-P[s.c]);

        return (k1*k2);

    }

    double ptoplane(pt p,fac s){

        return fabs(pvec(s)^(p-P[s.a]))/vlen(pvec(s));

    }



    void deal(int p, int a, int b){

        int f = to[a][b];

        fac add;

        if (F[f].ok){

            if (ptof(P[p], F[f]) > eps)

                dfs(p, f);

            else{

                add.a = b, add.b = a, add.c = p, add.ok = 1;

                to[p][b] = to[a][p] = to[b][a] = cnt;

                F[cnt++] = add;

            }

        }

    }



    void dfs(int p, int cur){

        F[cur].ok = 0;

        deal(p, F[cur].b, F[cur].a);

        deal(p, F[cur].c, F[cur].b);

        deal(p, F[cur].a, F[cur].c);

    }



    bool same(int s, int t){

        pt &a = P[F[s].a], &b = P[F[s].b], &c = P[F[s].c];

        return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(volume(a, b, c, P[F[t].b])) < eps && fabs(volume(a, b, c, P[F[t].c])) < eps;

    }



    //构建三维凸包

    void construct(){

        cnt = 0;

        if (n < 4)

            return;



        /*********此段是为了保证前四个点不公面,若已保证,可去掉********/

        bool sb = 1;

        //使前两点不公点

        for (int i = 1; i < n; i++){

            if (vlen(P[0] - P[i]) > eps){

                swap(P[1], P[i]);

                sb = 0;

                break;

            }

        }

        if (sb)return;



        sb = 1;

        //使前三点不公线

        for (int i = 2; i < n; i++){

            if (vlen((P[0] - P[1]) * (P[1] - P[i])) > eps){

                swap(P[2], P[i]);

                sb = 0;

                break;

            }

        }

        if (sb)return;



        sb = 1;

        //使前四点不共面

        for (int i = 3; i < n; i++){

            if (fabs((P[0] - P[1]) * (P[1] - P[2]) ^ (P[0] - P[i])) > eps){

                swap(P[3], P[i]);

                sb = 0;

                break;

            }

        }

        if (sb)return;

        /*********此段是为了保证前四个点不公面********/





        fac add;

        for (int i = 0; i < 4; i++){

            add.a = (i+1)%4, add.b = (i+2)%4, add.c = (i+3)%4, add.ok = 1;

            if (ptof(P[i], add) > 0)

                swap(add.b, add.c);

            to[add.a][add.b] = to[add.b][add.c] = to[add.c][add.a] = cnt;

            F[cnt++] = add;

        }



        for (int i = 4; i < n; i++){

            for (int j = 0; j < cnt; j++){

                if (F[j].ok && ptof(P[i], F[j]) > eps){

                    dfs(i, j);

                    break;

                }

            }

        }

        int tmp = cnt;

        cnt = 0;

        for (int i = 0; i < tmp; i++){

            if (F[i].ok){

                F[cnt++] = F[i];

            }

        }

    }



    //表面积

    double area(){

        double ret = 0.0;

        for (int i = 0; i < cnt; i++){

            ret += area(P[F[i].a], P[F[i].b], P[F[i].c]);

        }

        return ret / 2.0;

    }



    //体积

    double volume(){

        pt O(0, 0, 0);

        double ret = 0.0;

        for (int i = 0; i < cnt; i++) {

            ret += volume(O, P[F[i].a], P[F[i].b], P[F[i].c]);

        }

        return fabs(ret / 6.0);

    }



    pt BaryCenter() {

        pt O(0, 0, 0);

        double ret = 0.0,sumvolume = 0.0, sumx = 0.0, sumy = 0.0, sumz = 0.0;

        for(int i=0;i<cnt;i++) {

            double Vol = volume(O, P[F[i].a], P[F[i].b], P[F[i].c]);

            sumvolume += Vol;

            sumx += (P[F[i].a].x + P[F[i].b].x + P[F[i].c].x)*Vol;

            sumy += (P[F[i].a].y + P[F[i].b].y + P[F[i].c].y)*Vol;

            sumz += (P[F[i].a].z + P[F[i].b].z + P[F[i].c].z)*Vol;

        }

        return pt(sumx/sumvolume/4, sumy/sumvolume/4, sumz/sumvolume/4);

    }



    //表面三角形数

    int facetCnt_tri(){

        return cnt;

    }



    //表面多边形数

    int facetCnt(){

        int ans = 0;

        for (int i = 0; i < cnt; i++){

            bool nb = 1;

            for (int j = 0; j < i; j++){

                if (same(i, j)){

                    nb = 0;

                    break;

                }

            }

            ans += nb;

        }

        return ans;

    }

};





_3DCH hull,hull2;    //内有大数组,不易放在函数内



int main()

{

    while (scanf("%d", &hull.n)!=EOF){

        for (int i = 0; i < hull.n; i++)

            scanf("%lf%lf%lf", &hull.P[i].x, &hull.P[i].y, &hull.P[i].z);

        hull.construct();

        pt bc1 = hull.BaryCenter();

        scanf("%d",&hull2.n);

        for (int i = 0; i < hull2.n; i++)

            scanf("%lf%lf%lf", &hull2.P[i].x, &hull2.P[i].y, &hull2.P[i].z);

        hull2.construct();

        pt bc2 = hull2.BaryCenter();

        //printf("BARY1: %.2f %.2f %.2f\n",bc1.x,bc1.y,bc1.z);

        //printf("BARY2: %.2f %.2f %.2f\n",bc2.x,bc2.y,bc2.z);

        double dis1 = Mod, dis2 = Mod;

        for (int i = 0; i < hull.cnt; i++)

            dis1 = min(dis1,fabs(hull.ptoplane(bc1,hull.F[i])));

        for (int i = 0; i < hull2.cnt; i++)

            dis2 = min(dis2,fabs(hull2.ptoplane(bc2,hull2.F[i])));

        printf("%.6f\n",dis1+dis2);

    }

    return 0;

}
View Code

 

你可能感兴趣的:(poj)