Hadoop架构概述

HDFS架构概述

HDFS(Hadoop Distributed File System)的架构概述

  • NameNode(nn):存储文件的元数据,如文件名、文件目录结构、文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统中存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。

Yarn架构概述

Hadoop架构概述_第1张图片

MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce,如图所示
1)Map阶段并行处理输入数据
2)Reduce阶段对Map结果进行汇总

Hadoop架构概述_第2张图片

大数据技术生态体系

Hadoop架构概述_第3张图片

图中涉及的技术名词解释如下:

  1. Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySql)间进行数据的传递,可以将一个关系型数据库(例如
    :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
  2. Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
  3. Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:
    (1)通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
    (2)高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。 (3)支持通过Kafka服务器和消费机集群来分区消息。(4)支持Hadoop并行数据加载。
  4. Storm:Storm用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
  5. Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
  6. Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。
  7. Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
  8. Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。
    其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
  9. R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
  10. Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库。
  11. ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、
    分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

推荐系统框架

Hadoop架构概述_第4张图片

你可能感兴趣的:(技术分享)