- Prompt相关
伤心美眉
prompt
目录Prompt设计基础一.推理模型(例如gpt-4o,能够快速反应)二.通用模型Prompt相关一.AI需求类型二.Prompt类型三AI幻觉写Prompt技能一.基本技能二.基本策略三常见陷阱四如何写好一个Prompt1.基本模型:2.提示语链应用场景一文案写作二营销策划:三品牌故事Prompt设计基础一.推理模型(例如gpt-4o,能够快速反应)1.能够进行数学推导,逻辑分析,代码生成,复杂
- 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
weisian151
人工智能人工智能语言模型自然语言处理
RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合外部知识检索与大语言模型(LLM)生成能力的技术框架,旨在提升生成式AI在问答、内容创作等任务中的准确性、实时性和领域适应性。1、核心概念大语言模型(LLM)的两大局限性:时效性不足:LLM的训练数据截止于某一时间点,无法获取最新信息(如2025年后的新事件)。知识幻觉:当问题超出模型训练数据范围时,LLM
- 当争论者还在讨论AI的边界,实践者早已用这些技术解决实际问题
渡难繁辰
人工智能拥抱AI人工智能ai
——普通人参与AI革命的关键路径一、AI应用五大核心组件(通俗拆解版)1️⃣LLM:AI的「决策核心」本质:大型语言模型(如DeepSeek、通义千问),具备语言理解与生成能力能力边界:✅处理文本类任务(写作/翻译/摘要)❌无法获取实时信息(如最新股价)⚠️存在“幻觉”(虚构信息)风险案例对比:问:“鲁迅和周树人什么关系?”基础LLM:“两位都是著名作家”(错误)增强版LLM:“周树人是鲁迅本名”
- AI伦理与安全之-哥斯拉与缰绳:如何让“哥斯拉”听懂人类的“悄悄话”?
众链网络
AI伦理与安全AI人工智能AI工具AI智能体
相关文章:AI伦理与安全AI伦理与安全之-镜子与偏见:我们教给它的,究竟是智慧还是偏见?AI伦理与安全之-哥斯拉与缰绳:如何让“哥斯拉”听懂人类的“悄悄话”?AI伦理与安全之-梦境与幻觉:它为何会一本正经地胡说八道?在上一篇中,我们谈到AI像一面“镜子”,会映照出我们数据中的偏见。但那只是AI伦理问题中的“序章”。一个更深邃、更终极的挑战,正横亘在人类与超人工智能(ASI)的未来之间。这个挑战,就
- 【论文复现】利用生成式AI进行选股和分配权重
代码能跑就行管它可读性
人工智能chatgpt
2023年8月,OleksandrRomanko等发表题为《ChatGPT-basedInvestmentPortfolioSelection》(基于ChatGPT进行投资组合选择)的论文。论文探讨了生成式AI模型(如ChatGPT)在投资组合选择中的应用潜力。由于生成式AI模型可能产生幻觉,因此需要谨慎验证和验证其输出。本文采用另一种方法,利用ChatGPT从S&P500市场指数中获取潜在有吸引
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- 在 Dify 平台中集成上下文工程技术
由数入道
人工智能数据库大数据人工智能软件工程dify
1.提升LLM问答准确率的上下文构建与提示策略大语言模型在开放领域问答中常面临幻觉和知识过时等问题。为提高回答准确率,上下文工程的关键是在提示中注入相关背景知识与指导。具体策略包括:检索增强(RAG):通过从知识库中检索相关内容并将其纳入提示,可以显著提升回答的准确性和可信度。Dify提供了知识检索节点,支持向量数据库存储外部知识,并将检索结果通过上下文变量注入LLM提示中。例如,在知识库问答应用
- Cursor黑科技实战:AI编程革命,效率提升300%的秘籍
IT莫染
科技AI编程pythonCursorProDeepSeek-CoderAI重构
目录⚡程序员痛点诊断Cursor核心黑科技揭秘实战演示(附操作截图)场景1:AI秒杀样板代码(效率提升10倍)场景2:智能Debug(精准定位问题)场景3:跨语言迁移(Java→Python)生产力暴涨秘籍黑科技1:AI结对编程(Ctrl+L)黑科技2:代码气味检测(Ctrl+Shift+K)黑科技3:SQL优化(自然语言转SQL)避坑指南:Cursor三大死亡陷阱陷阱1:过度生成幻觉代码陷阱2:
- 大模型岗到底有哪些?这六个主要工作让你秒懂!
AGI大模型学习
机器学习人工智能大数据大模型学习大模型教程大模型程序员
一、Agent智能体Agent:能独立采取行动以实现特定目标的AI个体;Agent的特点:会使用工具,比如查数据库,买车票;拥有记忆,可以记住之前经历;会根据环境、自身记忆、自身能力进行行动决策;Agent的缺陷:带着大模型本身的幻觉情况;可用RAG降低该情况;二、RAG知识库RAG:在设定的知识库中搜索问题的最佳TopK个匹配资料,然后在使用大模型进行润色总结。RAG的特点:解决了大模型的幻觉问
- 结合LangGraph、DeepSeek-R1和Qdrant 的混合 RAG 技术实践
大模型之路
RAGrag
一、引言:混合RAG技术的发展与挑战在人工智能领域,检索增强生成(RAG)技术正成为构建智能问答系统的核心方案。传统RAG通过向量数据库存储文档嵌入并检索相关内容,结合大语言模型(LLM)生成回答,有效缓解了LLM的“幻觉”问题。然而,单一的稠密向量检索(如基于Transformer的嵌入模型)在处理关键词匹配和多义词歧义时存在局限性,而稀疏向量检索(如BM25)虽擅长精确关键词匹配,却缺乏语义理
- 语言的钥匙:提示工程的艺术与驾驭AI的智慧
田园Coder
人工智能科普人工智能科普
当大型语言模型(LLM)如GPT-4展现出令人惊叹的通用能力,却又伴随着“幻觉”、“黑箱”和“不可控”等阴影时,一个核心问题变得无比迫切:人类如何有效地与这些庞然大物沟通,引导它们可靠、安全、精准地完成任务?答案并非在于重新训练这头计算巨兽(成本高昂且周期漫长),而在于掌握一门新兴的关键技艺——提示工程(PromptEngineering)。提示工程,简而言之,就是精心设计输入给模型的自然语言指令
- 【LLaMA 3实战:检索增强】13、LLaMA 3+RAG精准问答系统优化全指南:从检索增强到可信度提升实战
无心水
LLaMA3模型实战专栏llamaLLaMA3对话能力全解析LLaMA3AI大模型LLaMa3实战程序员的AI开发第一课AI入门
一、RAG赋能LLaMA问答系统的核心价值与瓶颈突破(一)准确性提升的三大核心挑战问题类型典型表现传统方案局限RAG+LLaMA3解决方案知识滞后型错误回答包含过时技术细节依赖模型预训练更新动态检索最新文档库上下文误解曲解问题意图或检索内容固定分块导致语义断裂语义感知分块+动态查询扩展事实幻觉虚构不存在的概念或数据缺乏外部事实校验溯源标注+多模型交叉验证(二)RAG与LLaMA3的协同优势动态知识
- Cursor AI 编程黑科技实战技巧
深山技术宅
素养人工智能科技
以下是结合最新实战经验的CursorAI编程黑科技指南,涵盖高效开发、跨工具联动与深度优化技巧:一、核心功能实战技巧智能编辑模式(Ctrl+I)精准上下文理解:跨文件修改时,用自然语言描述需求(如“将utils.py中的日志函数迁移到lib/logger.py并改为异步调用”),自动完成代码迁移与重构。规避幻觉代码:对复杂需求追加约束(例:“用Python连接MySQL,禁用ORM,使用参数化查询
- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- RPC:跨越代码与硅晶的“握手”——你每天都在用,却可能从未真正理解它
老马爱知
信息技术#分布式计算rpc网络协议网络分布式系统微服务软件架构硬核科普
——从本地调用的幻觉到服务万物的底座,解析这个支配云原生时代的隐形协议引言:一个程序员的日常困境想象一下这个场景:你正在构建一个电商系统。用户服务(管理用户信息)在一台服务器上,订单服务在另一台,而支付服务,则由远在天边的第三方提供。当一个用户下单时,订单服务需要先向用户服务确认用户身份,再调用支付服务完成扣款。这三个服务如同三座孤岛,如何让它们高效、优雅地对话?难道你要手动编写Socket连接,
- 【RAG面试题】LLMs已经具备了较强能力,存在哪些不足点?
一叶千舟
AI面试题【RAG】RAG
目录LLMs核心不足点1、知识过时与静态性(LackofReal-Time&DynamicKnowledge):2、幻觉与事实性错误(Hallucinations&FactualInaccuracies):3、领域专业知识深度不足(LimitedDomain-SpecificExpertise):4、缺乏透明度和可追溯性(LackofTransparency&Traceability):5、上下文
- 深入理解RAG:大语言模型时代的知识增强架构
小胡说技书
#大模型/智能体语言模型架构人工智能python大模型RAG
在人工智能快速发展的今天,大语言模型(LLM)已经展现出令人惊叹的能力。然而,即使是最先进的模型也面临着知识更新滞后、事实性错误(幻觉)和专业领域知识不足等根本性挑战。检索增强生成(Retrieval-AugmentedGeneration,简称RAG)技术的出现,为解决这些问题提供了一个优雅而有效的方案。一、为什么需要RAG?从大模型的局限性说起1.1大语言模型的固有缺陷要理解RAG的价值,我们
- 大模型应用实战1——大模型基本开发知识及GLM4的原理与应用(用大模型做游戏npc)
爱学习的uu
人工智能算法深度学习python
大模型开发思路1.promptengineering注意明确输出格式,如以{"from":"","to":""}这种JSON格式输出。2.多轮互动产生原因:大模型会自己发散(幻觉)3.functionCalling产生原因:用户可以提问不同类型的事情,比如天气和季节解决方法:不要去给大模型设定好要做什么这里面,框架就要承担很重要的职责:1.根据用户注册的函数,在首次Prompt中生成所有Tool的
- 这9个MCP服务器改善AI幻觉(减少99%的代码错误)
李孟聊人工智能
AIAgents实战服务器人工智能AI编程MCPAIAgentAI幻觉
几乎所有AI编程助手都在持续产生过时API的幻觉,忘记项目上下文,并一遍又一遍地犯同样的错误。如果你曾花费数小时调试为什么React组件无法渲染,最后却发现你的AI使用的是2022年已废弃的hooks,你就知道这种痛苦。AI编程工具的上下文限制正在消耗开发者真正的时间和理智。它们会忘记之前的对话,引用过时的文档,并且缺乏对你项目完整范围的认知。但以下内容彻底改变了我的体验。我发现MCP服务器可以将
- 大模型RAG系统面试题及参考答案
大模型大数据攻城狮
算法大模型智能体aiagentpython面试向量数据库RAG
目录什么是RAG?它由哪些核心部分组成?RAG与传统的LLM(如GPT)生成方式有何区别?RAG的设计初衷是什么?解决了哪些问题?检索器(Retriever)在RAG中的作用是什么?生成器(Generator)如何与检索器交互?什么是向量检索(denseretrieval)与稀疏检索(sparseretrieval)?举例说明。RAG如何减少“幻觉(hallucination)”?为什么说RAG可
- 基于 LLM 的网络钓鱼网站检测多代理框架
hao_wujing
网络
大家读完觉得有帮助记得及时关注和点赞!!!抽象网络钓鱼网站继续构成重大的网络安全威胁,通常利用欺骗性结构、品牌冒充和社会工程策略来逃避检测。虽然大型语言模型(LLM)的最新进展通过上下文理解改进了网络钓鱼检测,但大多数现有方法都依赖于面临幻觉风险的单代理分类,并且缺乏可解释性或稳健性。为了解决这些限制,我们提出了PhishDebate,这是一个基于模块化的多代理LLM辩论框架,用于网络钓鱼网站检测
- 百度大模型免费上线,学AI大模型就选近屿智能
3月16日,文心大模型4.5和文心大模型X1正式发布!目前两款模型已免费对用户开放。文心大模型4.5是百度自主研发的新一代原生多模态基础大模型,通过多个模态联合建模实现协同优化,提高多模态理解能力,精进语言能力,提升理解、生成、逻辑、记忆能力和去幻觉、逻辑推理、代码能力,甚至还能理解网络笑话、梗图中的幽默和讽刺,并连贯地完成推理。文心大模型X1具备更强的理解、规划、反思、进化能力,并支持多模态,是
- LangChain、RAG、Agent是什么
ZhangJiQun&MXP
2021AIpython2024大模型以及算力教学langchain语言模型人工智能算法自然语言处理
LangChain、RAG、Agent是什么在本地部署基于DeepSeek-R1模型的商用级知识库系统,旨在帮助开发者搭建智能知识库,提升企业智能化水平。背景与技术概述:随着大语言模型和RAG技术发展,AI知识库广泛应用于各行业,但传统信息管理系统存在问题,大模型也有“幻觉”现象。RAG技术将信息检索与生成模型结合,能缓解“幻觉”,而Agent智能体和LangChain框架可满足复杂业务需求。本地
- llama_index chromadb实现RAG的简单应用
victorwjw
llama数据库RAG
此demo是自己提的一个需求:用modelscope下载的本地大模型实现RAG应用。毕竟大模型本地化有利于微调,RAG使内容更有依据。为什么要用RAG?由于大模型存在一定的局限性:知识时效性不足、专业领域覆盖有限以及生成结果易出现“幻觉”问题,需要通过结合实时数据和专业知识提升生成内容的准确性、时效性和可信度。检索增强生成(RAG)的核心价值在于弥补大模型固有缺陷一个简单样例加载本地大语言模型
- 就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!
倔强青铜3
Python封神榜python后端人工智能开发语言
就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!摘要“为什么同样的代码,在测试环境好好的,部署后就疯狂报FileNotFoundError?”本文揭露Python相对路径的三大致命陷阱,带你破解那些年我们都被骗过的"路径幻觉"!一、血泪现场:谁动了我的相对路径?#假设目录结构如下:#project/#├──main.py#└──resources/#└──config.json#ma
- 《思考是幻觉,自由是剧本》:“独立思考”是精英编造的神话!普通人连认知权都没有...
这篇文章将深入探讨「思考的本质」,不仅仅是哲学上的发问,更是对当代意识操控、社会结构、信息茧房等现象的深刻解构。我们会从神经科学、认知心理学、政治意识形态、技术媒介干预、社会分层等多重维度,解剖思考是如何被「构建」、如何被「利用」、又如何被「驯化」的。《思考的本质:从自由意识到被编程的幻觉》目录引言:你以为你在思考,其实你只是在复读第一章:意识,是进化的工具,还是控制的容器?第二章:思维是你的?不
- Langchain学习笔记(五):检索增强生成(RAG)基础原理
zhangsan0933
LangChainlangchain学习笔记
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。一.RAG系统的基本原理与架构检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索系统和生成式AI的混合架构,旨在解决大语言模型(LLM)的知识时效性和幻觉问题。RAG通过从外部知识库检索相关信息,然后将这
- 就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!
python后端人工智能
就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!摘要"为什么同样的代码,在测试环境好好的,部署后就疯狂报FileNotFoundError?"本文揭露Python相对路径的三大致命陷阱,带你破解那些年我们都被骗过的"路径幻觉"!一、血泪现场:谁动了我的相对路径?#假设目录结构如下:#project/#├──main.py#└──resources/#└──config.json#ma
- 一个Rules+3个MCP就让你的Cursor不仅无幻觉还能自主给修Bug,甚至还能把高速回复500次提升到2500次。
asunnyboy861
MCPCursorrulesCursorWindsurfAugmentTare消除幻觉
今天,我将为大家介绍一个神器级的解决方案——一个Rules+3个MCP。经过我的实测,这3个配合能让你的Cursor使用自动测试并优化cursor自己写的代码,不用再手动每次复制粘贴Bug让cursor看,全程无幻觉,还能把高速回复次数提升到2500次,免费版本IDE也可以使用,把1次Token消耗当10个Tokens用,效率大大提高,极大节省消耗次数。不仅限于Cursor,Augment,Win
- RAG:2025年检索增强生成前沿技术完全指南
大模型之路
RAGrag检索增强生产llm
一、RAG技术的核心突破与行业影响在生成式人工智能爆发的今天,检索增强生成(Retrieval-AugmentedGeneration,RAG)正以其独特的技术架构,成为连接静态知识库与动态生成能力的桥梁。这项诞生于2020年的创新技术,通过将信息检索(Retrieval)与文本生成(Generation)解耦又融合的设计,突破了传统语言模型“幻觉”问题的桎梏,为构建可信、可控、可扩展的AI系统奠
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交