虚拟内存机制

在早期的计算机中,是没有虚拟内存的概念的。我们要运行一个程序,会把程序全部装入内存,然后运行。
会出现以下问题:
1)进程地址空间不隔离,没有权限保护。
直接访问物理内存,可修改其他进程的内存数据。
2)内存使用效率低。
大量数据的装入装出。
3)程序运行的地址不确定。
内存地址随机分。

虚拟内存的作用:

1)给所有进程提供一致的地址空间,每个进程都认为自己是在独占使用单机系统的存储资源。可以控制物理内存的权限。
2)内存保护:保护每个进程的地址空间不被其他进程破坏,隔离了进程的地址访问。
3)根据缓存原理,上层存储是下层存储的缓存,虚拟内存把主存作为磁盘的高速缓存,在主存和磁盘之间根据需要来回传送数据,高效地使用了主存。
4)VA到PA的映射会给分配和释放内存带来方便。物理内存不连续的地址,可映射到连续的虚拟内存地址。

虚拟内存机制的优点
  • 扩大地址空间;
  • 内存保护:每个进程运行在各自的虚拟内存地址空间,互相不能干扰对方。
  • 每个进程的内存空间都是一致而且固定的(32位平台下都是4G),所以链接器在链接可执行文件时,可以设定内存地址,而不用去管这些数据最终实际内存地址,这交给内核来完成映射关系
  • 当不同的进程使用同一段代码时,比如库文件的代码,在物理内存中可以只存储一份这样的代码,不同进程只要将自己的虚拟内存映射过去就好了,这样可以节省物理内存
  • 在程序需要分配连续空间的时候,只需要在虚拟内存分配连续空间,而不需要物理内存时连续的,实际上,往往物理内存都是断断续续的内存碎片。这样就可以有效地利用我们的物理内存
  • 虚拟内存很适合在多道程序设计系统中使用,许多程序的片段同时保存在内存中。当一个程序等待它的一部分读入内存时,可以把CPU交给另一个进程使用。在内存中可以保留多个进程,系统并发度提高。
虚拟内存的代价:

1.虚存的管理需要建立很多数据结构,这些数据结构要占用额外的内存

2.虚拟地址到物理地址的转换,增加了指令的执行时间。

3.页面的换入换出需要磁盘I/O,这是很耗时的

4.如果一页中只有一部分数据,会浪费内存。

虚拟地址:

对于32位系统,寻址指针为4字节,对应的虚拟地址空间为0-2^32,即0-4G。
对于64位系统,寻址指针为8字节,对应的虚拟地址空间为0-2^64,即0-16G。不是实际存在的。
Linux内核把虚拟地址空间分为两部分:用户进程空间内核进程空间

虚拟内存

在缓存原理中,换入/换出的数据以为最小单位。在内存管理时,是地址空间的最小单位。

虚拟地址到物理地址的转换

进程得到的这4G虚拟内存是一个连续的地址空间(这也只是进程认为),而实际上,它通常是被分隔成多个物理内存碎片,还有一部分存储在外部磁盘存储器上,在需要时进行数据交换。

进程开始要访问一个地址,经历下面的过程
  1. 访问地址空间上的某一个地址,都需要把地址翻译为实际物理内存地址;
  2. 所有进程共享这整一块物理内存,每个进程只把自己目前需要的虚拟地址空间映射到物理内存上;
  3. 进程需要知道哪些地址空间上的数据在物理内存上,哪些不在(可能这部分存储在磁盘上),还有在物理内存上的哪里,这就需要通过页表来记录;
  4. 页表的每一个表项分两部分,第一部分记录此页是否在物理内存上,第二部分记录物理内存页的地址(如果在的话);
  5. 当进程访问某个虚拟地址的时候,就会先去看页表,如果发现对应的数据不在物理内存上,就会发生缺页异常;
  6. 缺页异常的处理过程,操作系统立即阻塞该进程,并将硬盘里对应的页换入内存,然后使该进程就绪,如果内存已经满了,没有空地方了,那就找一个页覆盖,至于具体覆盖的哪个页,就需要看操作系统的页面置换算法是怎么设计的了。

虚拟内存是怎么工作的

当每个进程创建的时候,内核会为进程分配4G的虚拟内存,当进程还没有开始运行时,这只是一个内存布局。实际上并不立即就把虚拟内存对应位置的程序数据和代码(比如.text .data段)拷贝到物理内存中,只是建立好虚拟内存和磁盘文件之间的映射就好(叫做存储器映射)。这个时候数据和代码还是在磁盘上的。当运行到对应的程序时,进程去寻找页表,发现页表中地址没有存放在物理内存上,而是在磁盘上,于是发生缺页异常,于是将磁盘上的数据拷贝到物理内存中。

另外在进程运行过程中,要通过malloc来动态分配内存时,也只是分配了虚拟内存,即为这块虚拟内存对应的页表项做相应设置,当进程真正访问到此数据时,才引发缺页异常

可以认为虚拟空间都被映射到了磁盘空间中(事实上也是按需要映射到磁盘空间上,通过mmap,mmap是用来建立虚拟空间和磁盘空间的映射关系的)

你可能感兴趣的:(虚拟内存机制)