【Matlab】CNN卷积神经网络时序预测算法

 资源下载: https://download.csdn.net/download/vvoennvv/88681558

一,概述

        CNN(Convolutional Neural Network,卷积神经网络)是一种前馈神经网络,主要用于处理具有类似网格结构的数据,例如图像和音频。CNN 的主要特点是卷积层和池化层的交替使用来提取数据特征,以及使用全连接层对这些特征进行分类和识别。 CNN 的主要结构包括卷积层、池化层和全连接层。其中卷积层主要用于提取数据中的特征,它通过将一个小的卷积核在数据上滑动,将局部特征提取出来。池化层则用于降低数据的维度,减少特征数量,从而简化模型的复杂度。全连接层则用于将提取的特征映射到具体的分类或识别结果上。 CNN 在图像识别、语音识别、自然语言处理等领域中,都取得了非常好的效果。相比于传统的机器学习算法,CNN 不需要手动提取特征,而是通过学习数据中的特征,从而更好地解决了复杂模式识别问题。同时,CNN 的参数共享和权值共享机制,使得模型的训练速度更快,且对于数据的变换和噪声具有较强的鲁棒性。总之,CNN 是一种重要的深度学习算法,它在图像、语音、自然语言等领域中具有广泛的应用,是目前最先进的图像识别算法之一。

二,代码

代码中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel。

部分代码如下:

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

% t_train = t_train';
% t_test  = t_test' ;
t_train =  double(t_train)';
t_test  =  double(t_test )';
%%  构造网络结构
layers = [
 imageInputLayer([f_, 1, 1])                 % 输入层 输入数据规模[15, 1, 1]
 
 convolution2dLayer([3, 1], 16, 'Stride', [1, 1], 'Padding', 'same')              
                                             % 卷积核大小 3 * 1 生成 16 张特征图
 batchNormalizationLayer                     % 批归一化层
 reluLayer                                   % Relu激活层

......

三,运行结果

【Matlab】CNN卷积神经网络时序预测算法_第1张图片

【Matlab】CNN卷积神经网络时序预测算法_第2张图片

【Matlab】CNN卷积神经网络时序预测算法_第3张图片

资源下载: https://download.csdn.net/download/vvoennvv/88681558

你可能感兴趣的:(Matlab,matlab,cnn,算法)