- 《AI大模型趣味实战 》第8集:多端适配 个人新闻头条 基于大模型和RSS聚合打造个人新闻电台(Flask WEB版) 2
带娃的IT创业者
AI大模型趣味实战人工智能flask前端
《AI大模型趣味实战》第8集:多端适配个人新闻头条基于大模型和RSS聚合打造个人新闻电台(FlaskWEB版)2摘要本文末尾介绍了如何实现新闻智能体的方法。在信息爆炸的时代,如何高效获取和筛选感兴趣的新闻内容成为一个现实问题。本文将带领读者通过Python和Flask框架,结合大模型的强大能力,构建一个个性化的新闻聚合平台,不仅能够自动收集整理各类RSS源的新闻,还能以语音播报的形式提供"新闻电台
- 小白学AI量化:DeepSeek+Python构建强大的金融数据挖掘与多维分析机器人
老余捞鱼
AI顾投高级策略AI探讨与学习人工智能python金融deepseek
作者:老余捞鱼原创不易,转载请标明出处及原作者。写在前面的话:在机构主导的量化交易时代,普通投资者如何用一杯奶茶的钱(15元/天)打造专业级智能量化产品?本文将为您揭秘一个革命性的解决方案——基于国产大模型DeepSeek和Python构建的智能数据挖掘分析机器人。它不仅适用于通用网页数据抓取,更能深度应用于金融领域,精准捕捉市场信号。本文“干货”很多,请务必耐心读完。一、颠覆认知的性价比革命1.
- 【机器学习】机器学习工程实战-第3章 数据收集和准备
腊肉芥末果
机器学习工程实战机器学习人工智能
上一章:第2章项目开始前文章目录3.1关于数据的问题3.1.1数据是否可获得3.1.2数据是否相当大3.1.3数据是否可用3.1.4数据是否可理解3.1.5数据是否可靠3.2数据的常见问题3.2.1高成本3.2.2质量差3.2.3噪声(noise)3.2.4偏差(bias)3.2.5预测能力低(lowpredictivepower)3.2.6过时的样本3.2.7离群值3.2.8数据泄露/目标泄漏3
- html5 相册翻转效果,HTML5 css3:3D旋转木马效果相册
岑依惜
html5相册翻转效果
这篇博客的目的是因为上篇HTML5CSS3专题诱人的实例CSS3打造百度贴吧的3D翻牌效果中有个关于CSS3D效果的比较重要的知识点没讲到,就是perspective和tranlateY效果图:嘿嘿,我把大学毕业时的一些照片,做成旋转木马,绕着我大文理旋转,不忘母校的培育之恩~1、perspectiveperspective属性包括两个属性:none和具有单位的长度值。其中perspective属
- DeepSeek 如何处理多模态数据(如文本、图像、视频)?
借雨醉东风
人工智能
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- Python知识分享第十四天
闵少搞AI
python开发语言
“”"1.面向对象相关概述概述面向对象是一种编程思想强调的是以对象为基础完成的各种操作它是基于面向过程的扩展Python中是同时支持面向对象和面向过程这两种编程思想的思想特点更符合人们的思考习惯把复杂的问题简单化把人们(程序员)从执行者变成了指挥者2.面向对象三大特征介绍封装继承多态封装概述封装就是隐藏对象的属性和实现细节仅对外提供公共的访问方式举例:插板电脑手机好处提高代码的安全性弊端代码量增加
- When Large Language Models Meet Speech: A Survey on Integration Approaches
UnknownBody
LLMDailySurveyPaper语言模型人工智能自然语言处理
主要内容研究背景:大语言模型(LLMs)在自然语言处理领域取得显著进展,其与语音的融合具有广泛应用前景,但缺乏相关集成方法的综述。文章将语音与LLMs集成方法分为基于文本、基于潜在表示和基于音频令牌三大类。集成方法基于文本的集成:通过级联集成、LLM重打分和LLM生成式错误纠正等方式,利用文本作为LLMs的输入和输出,处理语音相关任务,但存在信息损失和准确性与多样性平衡的问题。基于潜在表示的集成:
- 【机器学习】机器学习四大分类
藓类少女
机器学习机器学习分类人工智能
机器学习的方法主要可以分为四大类,根据学习方式和数据标注情况进行分类:1.监督学习(SupervisedLearning)特点:有标注数据(即训练数据有明确的输入(X)和输出(Y))。学习目标是找到一个映射(f(X)\approxY)。适用于分类和回归问题。主要算法:分类(Classification):逻辑回归(LogisticRegression)支持向量机(SVM)朴素贝叶斯(NaïveBa
- 大模型学习终极指南:从新手到专家的必经之路,全网最详尽解析,你敢挑战吗?
大模型入门教程
学习人工智能AI大模型大模型学习大模型教程AI大模型
随着人工智能技术的飞速发展,大模型(Large-ScaleModels)已经成为推动自然语言处理(NLP)、计算机视觉(CV)等领域进步的关键因素。本文将为您详细介绍从零开始学习大模型直至成为专家的全过程,包括所需掌握的知识点、学习资源以及实践建议等。无论您是初学者还是有一定基础的专业人士,都能从中获得有价值的指导。一、基础知识准备在开始学习大模型之前,需要先掌握一些基础知识,这些知识将为后续的学
- 向量数据库技术系列三-Chroma介绍
恰恰虎
chromadb数据库向量
一、前言Chroma是一个开源的AI原生向量数据库,旨在帮助开发者更加便捷地构建大模型应用,将知识、事实和技能等文档整合进大型语言模型(LLM)中。它提供了简单易用的API,支持存储嵌入及其元数据、嵌入文档和查询、搜索嵌入等功能。主要有以下特点:轻量级:Chroma是一个基于向量检索库实现的轻量级向量数据库,不需要复杂的配置和大规模基础设施支持,非常适合小型或中型项目。易用性:提供简单的API,易
- Macrorit Partition Expert:守护硬盘数据的「分区手术专家」
KJ-拾荒者
职场和发展经验分享性能优化软件推荐效率提升
你是否经历过这些崩溃瞬间?想给C盘扩容却怕误删文件,硬盘买回来发现系统不认大容量分区,或是想彻底清除隐私数据却担心被恢复软件找回……传统分区工具要么功能受限,要么操作风险高,稍有不慎就会导致数据灾难。MacroritPartitionExpert的出现,为普通用户和专业运维人员提供了一站式解决方案。作为兼容性极强的分区管理工具,它同时支持MBR和GPT分区表,轻松突破传统系统对2TB以上大硬盘的识
- 大模型Agent 和 RAG 的关系
大数据追光猿
大模型语言模型人工智能学习方法transformer
Agent和RAG(Retrieval-AugmentedGeneration)是两种在自然语言处理(NLP)和人工智能领域中广泛使用的技术,它们在功能、目标和实现方式上既有区别又有联系。以下是它们的关系及其协同作用的详细分析。1.Agent和RAG的定义(1)Agent定义:Agent是一种智能体,能够感知环境并采取行动以完成特定任务。在NLP领域,Agent通常指一个基于大语言模型(LLM)的
- 国产模型能否挑战 GPT-4?一文拆解 DeepSeek-V3 架构与实战应用
AI筑梦师
人工智能学习框架架构深度学习pythonagi人工智能tensorflow
✳️一、引言✅1.1DeepSeek-V3发布背景与定位随着大模型技术的快速演进,从GPT-3到GPT-4,全球在通用人工智能方向取得了长足进展。但与此同时,开源社区始终缺乏一个真正兼顾性能、效率、中文能力和实用性的高质量大模型。DeepSeek-V3的推出正是在这个背景下的一次关键突破。DeepSeek-V3是由中国团队DeepSeek开发的第三代大语言模型,它具备以下几个核心特性:开源可商用:
- Github上神仙级大模型项目:大语言模型(LLM)入门学习路线图,三个月让你从大模型基础到精通!
AI大模型-大飞
github语言模型学习人工智能AI大模型程序员AI
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。大语言模型(LargeLanguageM
- Agent、RAG、LangChain的概念及作用
北极冰雨
大模型人工智能
Agent:概念:在人工智能中,Agent通常指的是能够执行任务或做出决策的实体,可以是简单的程序,也可以是复杂的系统,如自动化客服助手、推荐系统等,甚至可以是软件代理、机器人或虚拟助手等各种形式。作用:它能利用内置的大语言模型来做出规划,决定执行哪些步骤,以及每个步骤需要调用哪些工具(如RAG),之后调用相应的工具,最终完成任务。例如,在客服问答场景中,Agent可以根据用户的问题,规划出需要查
- 【如何打包docker大镜像】
青柚~
docker容器运维
项目场景:需要将容器服务部署到离线服务器上;方案:本机的镜像进行打包,然后拷贝到服务器上部署问题描述提示:这里描述项目中遇到的问题:docker中镜像太大,以至于打包时电脑卡死解决方案:压缩打包dockersavemmyolo:v8|gzip>mmyolo.tar.gz拷贝到服务器上后先解压再加载#解压缩gunzipmmyolo.tar.gz#加载dockerload-immyolo.tar
- H800能效架构实战解析
智能计算研究中心
其他
内容概要H800能效架构以异构计算资源调度与动态功耗控制为核心,通过系统级协同设计实现算力密度与能耗优化的双重目标。其核心技术覆盖智能负载分配、电压频率动态调节及热管理三大模块,形成从芯片级到数据中心级的垂直优化链路。在架构设计中,异构资源调度算法通过实时分析任务特征与硬件状态,动态分配CPU、GPU及专用加速器资源,最大化硬件利用率;动态功耗模块则基于负载波动自适应调整供电策略,结合多级电压频率
- DeepSeek多语言AI高效应用实践
智能计算研究中心
其他
内容概要在人工智能技术快速迭代的背景下,DeepSeek系列模型凭借混合专家架构(MoE)与670亿参数规模,在多语言处理、视觉语言理解及复杂任务生成领域实现了突破性进展。本文系统性拆解其技术架构设计逻辑,聚焦论文写作、代码生成、SEO关键词拓展三大核心场景,分析模型在高生成质量、低使用成本维度的差异化优势。技术维度DeepSeekProver传统单模态模型多语言支持97种语言动态切换单一语种优化
- 模式搜索+扩散模型:FlowMo重构图像Token化的技术革命
芯作者
DD:日记重构
图像Token化作为现代生成式AI系统的核心技术,长期面临对抗性训练不稳定、潜在空间冗余等挑战。斯坦福大学李飞飞与吴佳俊团队提出的FlowMo(FlowtowardsModes)创新性地融合模式搜索与扩散模型,在多个关键维度突破传统方法局限,为图像压缩与重建开辟新路径。本文将深度解析其技术突破、实现原理及行业影响。一、传统图像Token化的困境与FlowMo的破局之道1.1传统方法的三大桎梏传统T
- 维普AIGC降重方法有哪些?
hjehheje
AIGC
在学术写作和论文创作中,重复率过高是许多人面临的一大难题。随着科技的发展,维普AIGC为我们提供了一系列有效的降重方法。那么,维普AIGC降重方法有哪些呢?接下来就为大家详细介绍。语义理解与改写维普AIGC具备强大的语义理解能力。例如,当我们面对一段论述市场趋势的文字时,它能精准把握核心含义。假设原文是“当前智能手机市场呈现出快速增长的趋势,消费者对高性能手机的需求日益旺盛”,维普AIGC可能会将
- 功率(电功率)的四大计算公式
深圳市青牛科技实业有限公司 小芋圆
芯谷芯麦顶源单片机人工智能新能源嵌入式硬件光伏逆变器
电功率是衡量电能转化为其他形式能量的速率。在电力系统中,功率的计算是基础且关键的内容。以下是电功率的四大计算公式:1.功率公式(直流电)对于直流电(DC),功率(P)可以通过以下公式计算:[P=V\timesI]其中:(P)为功率(瓦特,W)(V)为电压(伏特,V)(I)为电流(安培,A)2.功率公式(交流电)对于纯阻性负载的交流电(AC),功率公式与直流电类似:[P=V\timesI]3.有效功
- 设计模式:创建型、结构型、行为型
0319zz
设计模式
设计模式是一种解决软件设计中常见问题的通用解决方案。根据其目的,设计模式可以分为三大类:创建型模式、结构型模式和行为型模式。创建型模式创建型模式主要用于创建对象,抽象了实例化的过程,使系统独立于对象的创建、组合和表示。创建型模式包括以下几种:工厂方法模式:定义一个创建对象的接口,但由子类决定实例化哪一个类。抽象工厂模式:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。单例模式:
- 基于springboot的在线点餐系统
爱编程的小哥
java毕设springboot后端javavue
全栈在线点餐系统架构解析|SpringBoot+ElementUI后台管理实战(附高并发订单处理方案)一、系统全景透视基于五张效果图分析,该系统是餐饮行业全流程数字化解决方案,采用SpringBoot+MyBatisPlus+Vue2+ElementUI技术栈,实现用户端订餐与商家端管理的双向闭环。通过RBAC权限控制+订单状态机+实时库存预警三大核心机制,支持日均万级订单处理,覆盖从用户选餐、支
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- Redis大key
不7夜宵
redisbootstrap数据库
Redis大key基本概念,影响Redis大key指在Redis中存储了大量数据的键,它会对Redis的性能和内存管理产生影响。大key的定义与value的大小和元素数量有关,但这个定义并不是绝对的,而是相对的,具体取决于系统的使用场景和性能要求。大key通常有以下两种情况:Value存储占用空间大集合类型的Key中元素过多![[Pastedimage20250227151208.png]]造成的
- 多模态大模型常见问题
cv2016_DL
多模态大模型人工智能语言模型自然语言处理机器学习transformer
1.视觉编码器和LLM连接时,使用BLIP2中Q-Former那种复杂的Adaptor好还是LLaVA中简单的MLP好,说说各自的优缺点?Q-Former(BLIP2):优点:Q-Former通过查询机制有效融合了视觉和语言特征,使得模型能够更好地处理视觉-语言任务,尤其是在多模态推理任务中表现优秀。缺点:Q-Former结构较为复杂,计算开销较大。MLP(LLaVA):优点:MLP比较简单,计算
- 华山论剑,大模型(deepseek qwq gemini)辩论人生意义
Lifeng66666666
语言模型语言模型人工智能
借助DeepDiscussion程序,通过让大模型(deepseekqwqgemini)讨论“人生意义是什么”这一挑战问题,我们得以客观观察目前这几种大模型的价值观,能力,不足。部分讨论过程:问题:人生的意义是什么?deepseek/deepseek-r1:free初始方案:针对“人生的意义是什么”这一终极问题,我的解决方案分为以下五个层次,融合东西方哲学智慧与实践心理学,并提供具体行动方向:一、
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习deepseek机器学习算法
大语言模型微调和大语言模型应用的区别?关键要点微调大型语言模型(LLM)是调整预训练模型以适应特定任务或领域的过程,研究表明这能显著提升性能。大型语言模型应用是指将LLM用于实际问题解决或任务执行,如聊天机器人或文本生成。微调和应用的不同在于:微调是准备阶段,应用是最终使用;使用微调模型通常在特定领域表现更好,而预训练模型更适合通用任务。什么是微调大型语言模型?微调大型语言模型是指取一个已经预训练
- 【今日EDA行业分析】2025年3月21日
知梦EDA
EDA行业分析大数据人工智能半导体EDA行业分析
智算时代EDA行业新变局:技术突围与生态重构一、EDA产业格局剧变:技术壁垒与地缘博弈交织在半导体产业链的宏大版图中,EDA工具宛如数字时代的“工业母机”,其重要性伴随芯片复杂度的指数级攀升而愈发显著。据SEMI数据显示,2023年全球EDA市场规模成功突破200亿美元大关,中国本土市场增速更是达到了18%。然而,Synopsys、Cadence、Mentor这三大行业巨头依旧牢牢占据着超过85%
- C语言-排序
<三木>
C/C++杂碎的知识点c语言算法数据结构
C语言-排序冒泡排序选择排序冒泡排序两两比较,大的放后面。每比较一轮,记录交换的次数。当交换的次数为零时,则表示排序完成。chara[10]={9,5,1,2,4,7,6,8,3,0};9大于5交换59124768309大于1交换51924768309大于2交换51294768309大于4交换51249768309大于7交换51247968309大于6交换51247698309大于8交换51247
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found