/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void inorder(TreeNode* root, vector& res) {
if (!root) return;
inorder(root->left, res);
res.push_back(root->val);
inorder(root->right, res);
}
vector inorderTraversal(TreeNode* root) {
vector res;
inorder(root, res);
return res;
}
};
左右树的最大深度 + 1
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode* root) {
if (root == nullptr) return 0;
return max(maxDepth(root->left), maxDepth(root->right)) + 1;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if (root == nullptr) return 0;
queue q;
q.push(root);
int depth = 1;
while (!q.empty()) {
int sz = q.size();
for (int i = 0; i < sz; ++i) {
auto cur = q.front();
q.pop();
if (cur->left == nullptr && cur->right == nullptr) return depth;
if (cur->left != nullptr) q.push(cur->left);
if (cur->right != nullptr) q.push(cur->right);
}
depth++;
}
return depth;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
dfs(root);
return root;
}
void dfs(TreeNode* root) {
if (!root) return;
TreeNode* tmp = root->left;
root->left = root->right;
root->right = tmp;
dfs(root->left);
dfs(root->right);
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool check(TreeNode* p1, TreeNode* p2) {
if (!p1 && !p2) {
return true;
}
if (!p1 || !p2) {
return false;
}
return (p1->val == p2->val) && (check(p1->left, p2->right)) && (check(p1->right, p2->left));
}
bool isSymmetric(TreeNode* root) {
return check(root, root);
}
};
复杂度 O(N)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int count = 0; // 统计节点数
void inorder(TreeNode* root) {
if(!root) return;
inorder(root->left);
count += 1;
inorder(root->right);
}
int countNodes(TreeNode* root) {
inorder(root);
return count;
}
};
k
2k 2k+1
h层,则最底层最右边元素是2^{h-1}最左边是2^{h}-1
二分
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector binaryTreePaths(TreeNode* root) {
// 创建一个存储路径的结果集
vector result;
// 开始深度优先搜索
dfs(root, "", result);
return result;
}
void dfs(TreeNode* node, string path, vector& result) {
// 如果节点为空,返回
if (node == nullptr) {
return;
}
// *将当前节点值添加到路径中
path += to_string(node->val);
// 如果是叶子节点,将路径添加到结果集中
if (node->left == nullptr && node->right == nullptr) {
result.push_back(path);
return;
}
// 如果不是叶子节点,继续深度优先搜索
path += "->";
dfs(node->left, path, result);
dfs(node->right, path, result);
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int ans = 0;
int sumOfLeftLeaves(TreeNode* root) {
dfs(root);
return ans;
}
void dfs(TreeNode* r) {
if (r == nullptr) return;
// 是左节点且是叶子节点
if (r->left != nullptr && r->left->left == nullptr && r->left->right == nullptr) {
ans += r->left->val;
}
dfs(r->left);
dfs(r->right);
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
return dfs(p, q);
}
bool dfs(TreeNode* r1, TreeNode* r2) {
if (r1 == nullptr || r2 == nullptr) return r1 == r2;
if (r1->val != r2->val) return false;
return dfs(r1->left, r2->left) && dfs(r1->right, r2->right);
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int findBottomLeftValue(TreeNode* root) {
// 更新每一层的第一个节点即可
queue q;
q.push(root);
int res = root->val;
while (!q.empty()) {
int cs = q.size();
for (int i = 0; i < cs; ++i) {
auto node = q.front();
q.pop();
if (i == 0) res = node->val;
if (node->left) q.push(node->left);
if (node->right) q.push(node->right);
}
}
return res;
}
};
class Solution {
int ans;
int depth(TreeNode* rt){
if (rt == NULL) {
return 0; // 访问到空节点了,返回0
}
int L = depth(rt->left); // 左儿子为根的子树的深度(即节点数)
int R = depth(rt->right); // 右儿子为根的子树的深度
ans = max(ans, L + R + 1); // 计算d_node即L+R+1 并更新ans
return max(L, R) + 1; // 返回该节点为根的子树的深度
}
public:
int diameterOfBinaryTree(TreeNode* root) {
ans = 1;
depth(root);
return ans - 1;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector> levelOrder(TreeNode* root) {
vector> res;
if (!root) {
return res;
}
queue q;
q.push(root);
while(!q.empty()) {
res.push_back(vector());
int currSize = q.size();
for (int i = 1; i <= currSize; ++i) {
auto node = q.front();
q.pop();
// 注意
res.back().push_back(node->val);
if (node->left) q.push(node->left);
if (node->right) q.push(node->right);
}
}
return res;
}
};
任意节点左右子树高度差<=1
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int height(TreeNode* root) {
if (root == NULL) {
return 0;
}else {
return max(height(root->left), height(root->right)) + 1;
}
}
bool isBalanced(TreeNode* root) {
if (root == NULL) {
return true;
} else {
return abs(height(root->left) - height(root->right)) <= 1 && isBalanced(root->left) && isBalanced(root->right);
}
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
dfs(root);
return res;
}
bool res = true;
int dfs(TreeNode* node) {
if (node == nullptr) return 0;
int l = dfs(node->left), r = dfs(node->right);
if (abs(r - l) > 1) res = false;
return std::max(l, r) + 1;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
stack stack;
while (root != nullptr || stack.size() > 0) {
// 先找小的
while (root != nullptr) {
stack.push(root);
root = root->left;
}
root = stack.top();
stack.pop();
if (--k == 0) break;
root = root->right;
}
return root->val;
}
};
建树
后序最后一个节点是根节点-->确定左子树和右子树
# Definition for a binary tree node.
class Solution:
def buildTree(self, inorder, postorder):
# 使用哈希表存储中序遍历数组的值和对应的索引
map = {val: idx for idx, val in enumerate(inorder)}
# 开始递归构建树
return self.dfs(0, len(inorder) - 1, 0, len(postorder) - 1, inorder, postorder, map)
def dfs(self, in_left, in_right, post_left, post_right, inorder, postorder, map):
# 如果中序遍历的左边界大于右边界,返回空节点
if in_left > in_right:
return None
# 创建根节点,值为后序遍历的最后一个元素
node = TreeNode(postorder[post_right])
# 获取根节点在中序遍历中的索引
in_index = map[postorder[post_right]]
# 计算左子树节点个数
left_cnt = in_index - in_left
# 递归构建左右子树
node.left = self.dfs(in_left, in_index - 1, post_left, post_left + left_cnt - 1, inorder, postorder, map)
node.right = self.dfs(in_index + 1, in_right, post_left + left_cnt, post_right - 1, inorder, postorder, map)
# 返回根节点
return node