Inversion Time Limit 1s Memory Limit 131072KB Judge Program Standard Ratio(Solve/Submit) 15.00%(3/20) Description: bobo has a sequence a1,a2,…,an. He is allowed to swap two adjacent numbers for no more than k times. Find the minimum number of inversions after his swaps. Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and ai>aj. Input: The input consists of several tests. For each tests: The first line contains 2 integers n,k (1≤n≤105,0≤k≤109). The second line contains n integers a1,a2,…,an (0≤ai≤109). Output: For each tests: A single integer denotes the minimum number of inversions. Sample Input: 3 1 2 2 1 3 0 2 2 1 Sample Output: 1 2
在14年的多校联合训练上写过这道题目
求的是逆序对,数据有10^5大小,用O(n^2)的算法肯定会TLE,那么就自然而然想到了用归并排序(算法导论上也提过这个知识点)
但是这道题需要注意的几点就是,如果ans比交换的次数少那么要输出0,ans可能超出int范围所以需要用long long 类型存储
我们知道,求逆序对最典型的方法就是树状数组,但是还有一种方法就是Merge_sort(),即归并排序。
实际上归并排序的交换次数就是这个数组的逆序对个数,为什么呢?
我们可以这样考虑:
归并排序是将数列a[l,h]分成两半a[l,mid]和a[mid+1,h]分别进行归并排序,然后再将这两半合并起来。
在合并的过程中(设l<=i<=mid,mid+1<=j<=h),当a[i]<=a[j]时,并不产生逆序数;当a[i]>a[j]时,在
前半部分中比a[i]大的数都比a[j]大,将a[j]放在a[i]前面的话,逆序数要加上mid+1-i。因此,可以在归并
排序中的合并过程中计算逆序数.
Source Code:
//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include <stdio.h> #include <iostream> #include <fstream> #include <cstring> #include <cmath> #include <stack> #include <string> #include <map> #include <set> #include <list> #include <queue> #include <vector> #include <algorithm> #define Max(a,b) (((a) > (b)) ? (a) : (b)) #define Min(a,b) (((a) < (b)) ? (a) : (b)) #define Abs(x) (((x) > 0) ? (x) : (-(x))) #define MOD 1000000007 #define pi acos(-1.0) using namespace std; typedef long long ll ; typedef unsigned long long ull ; typedef unsigned int uint ; typedef unsigned char uchar ; template<class T> inline void checkmin(T &a,T b){if(a>b) a=b;} template<class T> inline void checkmax(T &a,T b){if(a<b) a=b;} const double eps = 1e-7 ; const int N = 210 ; const int M = 1100011*2 ; const ll P = 10000000097ll ; const int MAXN = 10900000 ; const int INF = 0x3f3f3f3f ; const int offset = 100 ; int a[110000],tmp[110000]; int n; ll ans; void Merge (int l,int m,int r) { int i = l; int j = m + 1; int k = l; while (i <= m && j <= r) { if (a[i] > a[j]) { tmp[k++] = a[j++]; ans += m - i + 1; } else { tmp[k++] = a[i++]; } } while (i <= m) tmp[k++] = a[i++]; while (j <= r) tmp[k++] = a[j++]; for (int i = l; i <= r; ++i) a[i] = tmp[i]; } void Merge_sort (int l,int r) { if (l < r) { int m = (l + r) >> 1; Merge_sort (l,m); Merge_sort (m+1,r); Merge (l,m,r); } } int main() { std::ios::sync_with_stdio(false); int i, j, t, k, u, c, v, p, numCase = 0; while (cin >> n >> k) { for (i = 0; i < n; ++i) { cin >> a[i]; } ans = 0; Merge_sort(0, n - 1); if (ans - k < 0) { cout << 0 << endl; } else { cout << ans - k << endl; } } return 0; }