Python之巅:探索50个代码大全

目录

      • 1-10 Python入门之美
      • 11-20 Python数据之美
      • 21-30 Python函数式编程之美
      • 31-40 Python面向对象之美
      • 41-50 Python实用技巧之美
      • 结尾

Python,是一门充满灵性的编程语言,其简洁而强大的语法使得编写优雅代码变得轻松自如。本文将引领你穿越Python的奇妙世界,展示50个令人叹为观止的代码大全,助你在编程之路上更上一层楼。


Python代码大全

Python的美在于其简洁和表达力,以下是50个代码大全,为你展示编程之美的无穷可能。

1-10 Python入门之美

  1. Hello, World! 你好,世界!
    print("Hello, World!")
    
  2. 变量交换
    a, b = b, a
    
  3. 列表推导式
    squares = [x**2 for x in range(10)]
    
  4. lambda函数
    add = lambda x, y: x + y
    
  5. 列表切片
    sublist = myList[1:5]
    
  6. 元组解包
    x, y, z = myTuple
    
  7. 三元表达式
    result = "Even" if num % 2 == 0 else "Odd"
    
  8. 字典推导式
    squares_dict = {x: x**2 for x in range(10)}
    
  9. 集合
    unique_numbers = set([1, 2, 3, 4, 4, 4, 5])
    
  10. enumerate函数
    for index, value in enumerate(myList):
        print(f"Index: {index}, Value: {value}")
    

11-20 Python数据之美

  1. 栈实现
    stack = []
    stack.append(item)
    popped_item = stack.pop()
    
  2. 队列实现
    from collections import deque
    queue = deque()
    queue.append(item)
    popped_item = queue.popleft()
    
  3. 堆实现
    import heapq
    heapq.heapify(myList)
    smallest = heapq.heappop(myList)
    
  4. 默认字典
    from collections import defaultdict
    d = defaultdict(int)
    
  5. Counter计数器
    from collections import Counter
    counts = Counter(myList)
    
  6. 命名元组
    from collections import namedtuple
    Point = namedtuple('Point', ['x', 'y'])
    p = Point(1, 2)
    
  7. JSON转换
    import json
    json_string = json.dumps(my_dict)
    
  8. 文件读写
    with open('file.txt', 'r') as file:
        content = file.read()
    
  9. 递归
    def factorial(n):
        return 1 if n == 0 else n * factorial(n-1)
    
  10. 生成器表达式
    squares_gen = (x**2 for x in range(10))
    

21-30 Python函数式编程之美

  1. map函数
    doubled_numbers = list(map(lambda x: x * 2, my_numbers))
    
  2. filter函数
    even_numbers = list(filter(lambda x: x % 2 == 0, my_numbers))
    
  3. reduce函数
    from functools import reduce
    product = reduce(lambda x, y: x * y, my_numbers)
    
  4. 装饰器
    def my_decorator(func):
        def wrapper():
            print("Something is happening before the function is called.")
            func()
            print("Something is happening after the function is called.")
        return wrapper
    
    @my_decorator
    def say_hello():
        print("Hello!")
    
  5. 偏函数
    from functools import partial
    multiply_by_two = partial(lambda x, y: x * y, 2)
    result = multiply_by_two(5)
    
  6. 生成器函数
    def fibonacci():
        a, b = 0, 1
        while True:
            yield a
            a, b = b, a + b
    
  7. 闭包
    def outer_function(x):
        def inner_function(y):
            return x + y
        return inner_function
    
    add_five = outer_function(5)
    result = add_five(3)
    
  8. 函数参数解构
    def print_person_info(name, age):
        print(f"Name: {name}, Age: {age}")
    
    person = {"name": "Alice", "age": 30}
    print_person_info(**person)
    
  9. 匿名函数
    add = lambda x, y: x + y
    
  10. 函数注解
    def greet(name: str) -> str:
        return f"Hello, {name}!"
    
    result = greet("Alice")
    

31-40 Python面向对象之美

  1. 类与对象
    class Car:
        def __init__(self, brand, model):
            self.brand = brand
            self.model = model
    
    my_car = Car("Toyota", "Camry")
    
  2. 继承与多态
    class Animal:
        def speak(self):
            pass
    
    class Dog(Animal):
        def speak(self):
            return "Woof!"
    
    class Cat(Animal):
        def speak(self):
            return "Meow!"
    
    my_dog = Dog()
    my_cat = Cat()
    
  3. 抽象类与接口
    from abc import ABC, abstractmethod
    
    class Shape(ABC):
        @abstractmethod
        def area(self):
            pass
    
    class Circle(Shape):
        def area(self):
            pass
    
  4. 属性封装
    class Person:
        def __init__(self, name, age):
            self._name = name
            self._age = age
    
        @property
        def name(self):
            return self._name
    
        @property
        def age(self):
            return self._age
    
  5. 类方法与静态方法
    class MathOperations:
        @staticmethod
        def add(x, y):
            return x + y
    
        @classmethod
        def multiply(cls, x, y):
            return x * y
    
  6. 属性装饰器
    class Circle:
        def __init__(self, radius):
            self._radius = radius
    
        @property
        def radius(self):
            return self._radius
    
        @radius.setter
        def radius(self, value):
            if value < 0:
                raise ValueError("Radius cannot be negative.")
            self._radius = value
    
  7. 多重继承
    class A:
        pass
    
    class B:
        pass
    
    class C(A, B):
        pass
    
  8. Mixin模式
    class JSONMixin:
        def to_json(self):
            import json
            return json.dumps(self.__dict__)
    
    class Person(JSONMixin):
        def __init__(self, name, age):
            self.name = name
            self.age = age
    
  9. 元类
    class Meta(type):
        def __new__(cls, name, bases, attrs):
            # Custom logic here
            return super().__new__(cls, name, bases, attrs)
    
    class MyClass(metaclass=Meta):
        pass
    
  10. 单例模式
    class Singleton:
        _instance = None
    
        def __new__(cls):
            if cls._instance is None:
                cls._instance = super().__new__(cls)
            return cls._instance
    

41-50 Python实用技巧之美

  1. 反向迭代
    reversed_list = my_list[::-1]
    
  2. 列表拆分
    chunks = [my_list[i:i+chunk_size] for i in range(0, len(my_list), chunk_size)]
    
  3. 链式比较
    if 1 < x < 10:
        print("x is between 1 and 10")
    
  4. 集合运算
    intersection = set1 & set2
    union = set1 | set2
    difference = set1 - set2
    
  5. 一行代码实现FizzBuzz
    fizzbuzz = ["Fizz"*(i%3==0) + "Buzz"*(i%5==0) or i for i in range(1, 101)]
    
  6. 字典默认值
    my_dict = {"a": 1, "b": 2}
    value = my_dict.get("c", 0)
    
  7. 合并字典
    merged_dict = {**dict1, **dict2}
    
  8. 查找最大值和索引
    max_value = max(my_list)
    index_of_max = my_list.index(max_value)
    
  9. 链式函数调用
    result = my_function().do_something().do_another_thing()
    
  10. 打印进度条
    import sys
    sys.stdout.write("[%-20s] %d%%" % ('='*progress, progress*5))
    sys.stdout.flush()
    

结尾

感谢你一路走来,探索这50个Python代码之美。这些代码展示了Python的多面魅力,从基础入门到高级技巧,每一行代码都是编程之旅中的一颗璀璨明珠。

希望这篇博客激发了你对Python的兴趣,让你在编程的海洋中畅游愉快。感谢你的阅读,期待与你在下次的冒险中再相遇!

你可能感兴趣的:(好“物”分享,python)