第 3-7 课:Spring Boot 集成 Druid 监控数据源

Druid 介绍

Druid 是阿⾥巴巴开源平台上的⼀个项⽬,整个项⽬由数据库连接池、插件框架和 SQL 解析器组成,该项⽬
主要是为了扩展 JDBC 的⼀些限制,可以让程序员实现⼀些特殊的需求,⽐如向密钥服务请求凭证、统计
SQL 信息、 SQL 性能收集、 SQL 注⼊检查、 SQL 翻译等,程序员可以通过定制来实现⾃⼰需要的功能。
 
Druid ⾸先是⼀个数据库连接池,但它不仅仅是⼀个数据库连接池,还包含了⼀个 ProxyDriver ,⼀系列内置
JDBC 组件库,⼀个 SQL Parser 。在 Java 的世界中 Druid 是监控做的最好的数据库连接池,在功能、性
能、扩展性⽅⾯,也有不错的表现。
 

Druid 可以做什么

  • 替换其他 Java 连接池,Druid 提供了⼀个⾼效、功能强⼤、可扩展性好的数据库连接池。
  • 可以监控数据库访问性能,Druid 内置提供了⼀个功能强⼤的 StatFilter 插件,能够详细统计 SQL 的执 ⾏性能,这对于线上分析数据库访问性能有很⼤帮助。
  • 数据库密码加密。直接把数据库密码写在配置⽂件中,这是不好的⾏为,容易导致安全问题, DruidDruiver DruidDataSource 都⽀持 PasswordCallback
  • SQL 执⾏⽇志,Druid 提供了不同的 LogFilter,能够⽀持 Common-LoggingLog4j JdkLog,可以 按需要选择相应的 LogFilter,监控应⽤的数据库访问情况。
  • 扩展 JDBC,如果你要对 JDBC 层有编程的需求,可以通过 Druid 提供的 Filter 机制,很⽅便编写 JDBC 层的扩展插件。

Spring Boot 集成 Druid

⾮常令⼈⾼兴的是,阿⾥为 Druid 也提供了 Spring Boot Starter 的⽀持。官⽹这样解释: Druid Spring Boot
Starter ⽤于帮助你在 Spring Boot 项⽬中轻松集成 Druid 数据库连接池和监控。
 
Druid Spring Boot Starter 主要做了哪些事情呢?其实这个组件包很简单,主要提供了很多⾃动化的配置,按
Spring Boot 的理念对很多内容进⾏了预配置,让我们在使⽤的时候更加的简单和⽅便。
 

MyBatis 中使⽤ Druid 作为连接池

在前⾯课程中的 spring-boot-mybatis-annotation 上去集成。
引⼊依赖包

 com.alibaba
 druid-spring-boot-starter
 1.1.10
  • druid-spring-boot-starter 的最新版本为 1.1.10,会⾃动依赖 Druid 相关包。

application 配置

Druid Spring Boot Starter 配置属性的名称完全遵照 Druid ,可以通过 Spring Boot 配置⽂件来配置 Druid
据库连接池和监控,如果没有配置则使⽤默认值。
 
 
# 实体类包路径
mybatis.type-aliases-package=com.neo.model
spring.datasource.type: com.alibaba.druid.pool.DruidDataSource
spring.datasource.url=jdbc:mysql://localhost:3306/test?serverTimezone=UTC&useUnico
de=true&characterEncoding=utf-8&useSSL=true
spring.datasource.username=root
spring.datasource.password=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
# 初始化⼤⼩、最⼩、最⼤连接数
spring.datasource.druid.initial-size=3
spring.datasource.druid.min-idle=3
spring.datasource.druid.max-active=10
# 配置获取连接等待超时的时间
spring.datasource.druid.max-wait=60000
# 监控后台账号和密码
spring.datasource.druid.stat-view-servlet.login-username=admin
spring.datasource.druid.stat-view-servlet.login-password=admin
# 配置 StatFilter
spring.datasource.druid.filter.stat.log-slow-sql=true
spring.datasource.druid.filter.stat.slow-sql-millis=2000
在以前项⽬的基础上,增加了对 Druid 连接池的配置,以及 SQL 监控的配置, druid-spring-boot-starter 默认
情况下开启 StatFilter 的监控功能。 Druid Spring Boot Starter 不限于对以上配置属性提供⽀持,
DruidDataSource 内提供 setter ⽅法的可配置属性都将被⽀持。
 
更多配置内容请参考 druid-spring-boot-starter
 
配置完成后,直接启动项⽬访问地址: http://localhost:8080/druid ,就会出现 Druid 监控后台的登录⻚⾯,输
⼊账户和密码后,就会进⼊⾸⻚。
第 3-7 课:Spring Boot 集成 Druid 监控数据源_第1张图片
⾸⻚会展示项⽬使⽤的 JDK 版本、数据库驱动、 JVM 相关统计信息。根据上⾯的菜单可以看出 Druid 的功
能⾮常强⼤,⽀持数据源、 SQL 监控、 SQL 防⽕墙、 URI 监控等很多功能。
我们这⾥重点介绍⼀下 SQL 监控,具体的展示信息如下:
第 3-7 课:Spring Boot 集成 Druid 监控数据源_第2张图片

 

这⾥的 SQL 监控会将项⽬中具体执⾏的 SQL 打印出来,展示此 SQL 执⾏了多少次、每次返回多少数据、执
⾏的时间分布是什么。这些功能⾮常的实⽤,⽅便我们在实际⽣产中查找出慢 SQL ,最后对 SQL 进⾏调
优。
从这个例⼦可发现,使⽤ Spring Boot 集成 Druid ⾮常的简单,只需要添加依赖,简单配置就可以。

MyBatis + Druid 多数据源

接下来为⼤家介绍 MyBatis 多数据源中是如何使⽤ Druid 数据库连接池的。
 

配置⽂件

 ⾸先我们需要配置两个不同的数据源:

spring.datasource.druid.one.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.druid.one.url = jdbc:mysql://localhost:3306/test1?serverTimezone
=UTC&useUnicode=true&characterEncoding=utf-8&useSSL=true
spring.datasource.druid.one.username = root
spring.datasource.druid.one.password = root
spring.datasource.druid.two.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.druid.two.url = jdbc:mysql://localhost:3306/test2?serverTimezone
=UTC&useUnicode=true&characterEncoding=utf-8&useSSL=true
spring.datasource.druid.two.username = root
spring.datasource.druid.two.password = root
第⼀个数据源以 spring.datasource.druid.one.* 为前缀连接数据库 test1 ,第⼆个数据源以
spring.datasource.druid.two.* 为前缀连接数据库 test2
 
强烈注意: Spring Boot 2.X 版本不再⽀持配置继承,多数据源的话每个数据源的所有配置都需要单独配
置,否则配置不会⽣效。
# StatViewServlet 配置
spring.datasource.druid.stat-view-servlet.login-username=admin
spring.datasource.druid.stat-view-servlet.login-password=admin
# 配置 StatFilter
spring.datasource.druid.filter.stat.log-slow-sql=true
spring.datasource.druid.filter.stat.slow-sql-millis=2000
# Druid 数据源 1 配置
spring.datasource.druid.one.initial-size=3
spring.datasource.druid.one.min-idle=3
spring.datasource.druid.one.max-active=10
spring.datasource.druid.one.max-wait=60000
# Druid 数据源 2 配置
spring.datasource.druid.two.initial-size=6
spring.datasource.druid.two.min-idle=6
spring.datasource.druid.two.max-active=20
spring.datasource.druid.two.max-wait=120000
fifilter stat 作为 Druid 的公共信息配置,其他数据源的配置需要各个数据源单独配置。

注⼊多数据源

⾸先为两个数据源创建不同的 Mapper 包路径,将以前的 UserMapper 复制到包 com.neo.mapper.one
com.neo.mapper.two 路径下,并且分别重命名为 UserOneMapper UserTwoMapper
 
定义⼀个 MultiDataSourceConfifig 类,对两个不同的数据源进⾏加载:
 
@Configuration
public class MultiDataSourceConfig {
 @Primary
 @Bean(name = "oneDataSource")
 @ConfigurationProperties("spring.datasource.druid.one")
 public DataSource dataSourceOne(){
 return DruidDataSourceBuilder.create().build();
 }
 @Bean(name = "twoDataSource")
 @ConfigurationProperties("spring.datasource.druid.two")
 public DataSource dataSourceTwo(){
 return DruidDataSourceBuilder.create().build();
 }
}
必须指明⼀个为默认的主数据源,使⽤注解: @Primary 。加载配置两个数据源的 DataSourceConfifig 和前⾯
课程中 MyBatis 多数据源使⽤的配置⼀致没有变化。
 
注意:在多数据源的情况下,我们不需要再启动类添加 @MapperScan("com.xxx.mapper") 的注解。

测试使⽤

以上所有的配置内容都完成后,启动项⽬访问这个地址: http://localhost:8080/druid ,单击数据源查看数据库
连接信息。
 
如果数据源没有信息,先访问地址: http://localhost:8080/getUsers ,⽤来触发数据库连接。在没有
SQL 使⽤的情况下,⻚⾯监控不到数据源的配置信息, SQL 监控⻚⾯也监控不到 SQL 的执⾏。
 
显示效果如下:
第 3-7 课:Spring Boot 集成 Druid 监控数据源_第3张图片
 
摘录⾃数据源 1 的显示信息

Keyword

value

解释

 

连接地址

jdbc:mysql://localhost:3306/test1? useUnicode=true&characterEncoding=utf-8

 

JDBC 连接字符串串

初始化连接⼤大⼩小

 

3

连接池建⽴立时创建的初始化连接数

最⼩小空闲连接数

 

3

连接池中最⼩小的活跃连接数

最⼤大连接数

 

10

连接池中最⼤大的活跃连接数

 

MaxWait

 

10000

配置获取连接等待超时的时间

摘录⾃数据源 2 的显示信息

Keyword

value

解释

 

连接地址

jdbc:mysql://localhost:3306/test2? useUnicode=true&characterEncoding=utf-8

 

JDBC 连接字符串串

初始化连接⼤大⼩小

 

6

连接池建⽴立时创建的初始化连接数

最⼩小空闲连接数

 

6

连接池中最⼩小的活跃连接数

最⼤大连接数

 

20

连接池中最⼤大的活跃连接数

 

MaxWait

 

120000

配置获取连接等待超时的时间

通过这两个数据源的连接信息来看,两个数据源的配置信息已经⽣效。

Spring Data JPA 集成 Druid 的⽅式和 MyBatis ⼤体相同。

引⼊相关依赖包:

 org.springframework.boot
 spring-boot-starter-web


 com.alibaba
 druid-spring-boot-starter
 1.1.10
添加 Web 依赖是因为需要在启动的时候保持容器运⾏,同时在项⽬中添加了 Web 访问,内容如下:
@RestController
public class UserController {
 @Autowired
 private UserRepository userRepository;
 @RequestMapping("/getUsers")
 public List getUsers() {
 List users=userRepository.findAll();
 return users;
 }
}
内容⽐较简单获取所有的⽤户信息并展示出来。
Application 中添加以下信息:
 
# 初始化⼤⼩、最⼩、最⼤链接数
spring.datasource.druid.initial-size=3
spring.datasource.druid.min-idle=3
spring.datasource.druid.max-active=10
# 配置获取连接等待超时的时间
spring.datasource.druid.max-wait=60000
# StatViewServlet 配置
spring.datasource.druid.stat-view-servlet.login-username=admin
spring.datasource.druid.stat-view-servlet.login-password=admin
# 配置 StatFilter
spring.datasource.druid.filter.stat.log-slow-sql=true
spring.datasource.druid.filter.stat.slow-sql-millis=2000
好了,这样就成功的在 JPA 项⽬中配置好了 Druid 的使⽤。启动项⽬先访问地址:
http://localhost:8080/getUsers ,再访问 http://localhost:8080/druid ,查看 SQL 执⾏记录,如下:
 
 
会发现有 create table addres... drop table if exist... 这样的 SQL 语句,这是因为我们将 JPA 的策略设置
create spring.jpa.properties.hibernate.hbm2ddl.auto=create ,意味着每次重启的时候对会重新创建表,
⽅便我们在测试的时候使⽤。
 
 

JPA + Druid + 多数据源

因为 Druid 官⽅还没有针对 Spring Boot 2.0 进⾏优化,在某些场景下使⽤就会出现问题,⽐如在 JPA 多数
据源的情况下直接使⽤ Druid 提供的 druid-spring-boot-starter 就会报错,既然 druid-spring-boot-starter 不⽀
持,那么我们就使⽤ Druid 的原⽣包进⾏封装。
 
在前⾯示例项⽬ spring-boot-multi-Jpa 的基础上进⾏改造。

添加依赖


 com.alibaba
 druid
 1.1.10


 log4j
 log4j
 1.2.17


删掉对 druid-spring-boot-starter 包的依赖,添加 Druid 的依赖包,添加 log4j 的原因是因为 Druid 依赖于
log4j 打印⽇志。

多数据源配置

配置⽂件我们做这样的设计,将多个数据源相同配置抽取出来共⽤,每个数据源个性配置信息单独配置。

数据库1的配置,以 spring.datasource.druid.one 开头:

spring.datasource.druid.one.url=jdbc:mysql://localhost:3306/test1?serverTimezone=U
TC&useUnicode=true&characterEncoding=utf-8&useSSL=true
spring.datasource.druid.one.username=root
spring.datasource.druid.one.password=root
spring.datasource.druid.one.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.druid.one.initialSize=3
spring.datasource.druid.one.minIdle=3
spring.datasource.druid.one.maxActive=10
多数据源的共同配置,以 spring.datasource.druid 开头,是多个数据源的公共配置项。
配置获取连接等待超时的时间
spring.datasource.druid.maxWait=60000
#配置间隔多久才进⾏⼀次检测,检测需要关闭的空闲连接,单位是毫秒
spring.datasource.druid.timeBetweenEvictionRunsMillis=60000
#配置⼀个连接在池中最⼩⽣存的时间,单位是毫秒
spring.datasource.druid.minEvictableIdleTimeMillis=600000
spring.datasource.druid.maxEvictableIdleTimeMillis=900000
spring.datasource.druid.validationQuery=SELECT 1 FROM DUAL
#y检测连接是否有效
spring.datasource.druid.testWhileIdle=true
#是否在从池中取出连接前进⾏检验连接池的可⽤性
spring.datasource.druid.testOnBorrow=false
#是否在归还到池中前进⾏检验连接池的可⽤性
spring.datasource.druid.testOnReturn=false
# 是否打开 PSCache,
spring.datasource.druid.poolPreparedStatements=true
#并且指定每个连接上 PSCache 的⼤⼩
spring.datasource.druid.maxPoolPreparedStatementPerConnectionSize=20
#配置监控统计拦截的 filters
spring.datasource.druid.filters=stat,wall,log4j
#通过 connectProperties 属性来打开 mergeSQL 功能,慢 SQL 记录
spring.datasource.druid.connectionProperties=druid.stat.mergeSql=true;druid.stat.s
lowSqlMillis=600
更多的配置信息请 参考这⾥

 

我们定义⼀个 DruidConfifig 来加载所有的公共配置项,如下:

@Component
@ConfigurationProperties(prefix="spring.datasource.druid")
public class DruidConfig {
 protected String url;
 protected String username;
 protected String password;
 protected String driverClassName;
 protected int initialSize;
 protected int minIdle;
 protected int maxActive;
 protected int maxWait;
 protected int timeBetweenEvictionRunsMillis;
 protected long minEvictableIdleTimeMillis;
 protected long maxEvictableIdleTimeMillis;
 protected String validationQuery;
 protected boolean testWhileIdle;
 protected boolean testOnBorrow;
 protected boolean testOnReturn;
 protected boolean poolPreparedStatements;
 protected int maxPoolPreparedStatementPerConnectionSize;
 protected String filters;
 protected String connectionProperties;
 // 省略 getter setter
}
再定义⼀个 DruidOneConfifig 来加载数据源 1 的配置项,并继承 DruidConfifig
 
@Component
@ConfigurationProperties(prefix="spring.datasource.druid.one")
public class DruidOneConfig extends DruidConfig{
 private String url;
 private String username;
 private String password;
 private String driverClassName;
 private int initialSize;
 private int minIdle;
 private int maxActive;
 // 省略 getter setter
}
再定义⼀个 DruidTwoConfifig 来加载数据源 2 的配置项并继承 DruidConfifig ,代码和 DruidOneConfifig 类基本
⼀致。

启动时加载

创建类 DruidDBConfifig 在启动的时候注⼊配置的多数据源信息。

@Configuration
public class DruidDBConfig {
 @Autowired
 private DruidConfig druidOneConfig;
 @Autowired
 private DruidConfig druidTwoConfig;
 @Autowired
 private DruidConfig druidConfig;
}
在类中创建 initDruidDataSource() ⽅法,初始化 Druid 数据源各属性。各个数据库的个性化配置从 confifig
读取,公共配置项从 druidConfifig 对象获取。

 

private DruidDataSource initDruidDataSource(DruidConfig config) {
 DruidDataSource datasource = new DruidDataSource();
 datasource.setUrl(config.getUrl());
 datasource.setUsername(config.getUsername());
 datasource.setPassword(config.getPassword());
 datasource.setDriverClassName(config.getDriverClassName());
 datasource.setInitialSize(config.getInitialSize());
 datasource.setMinIdle(config.getMinIdle());
 datasource.setMaxActive(config.getMaxActive());
 // common config
 datasource.setMaxWait(druidConfig.getMaxWait());
 datasource.setTimeBetweenEvictionRunsMillis(druidConfig.getTimeBetweenEviction
RunsMillis());
 datasource.setMinEvictableIdleTimeMillis(druidConfig.getMinEvictableIdleTimeMi
llis());
 datasource.setMaxEvictableIdleTimeMillis(druidConfig.getMaxEvictableIdleTimeMi
llis());
 datasource.setValidationQuery(druidConfig.getValidationQuery());
 datasource.setTestWhileIdle(druidConfig.isTestWhileIdle());
 datasource.setTestOnBorrow(druidConfig.isTestOnBorrow());
 datasource.setTestOnReturn(druidConfig.isTestOnReturn());
 datasource.setPoolPreparedStatements(druidConfig.isPoolPreparedStatements());
 datasource.setMaxPoolPreparedStatementPerConnectionSize(druidConfig.getMaxPool
PreparedStatementPerConnectionSize());
 try {
 datasource.setFilters(druidConfig.getFilters());
 } catch (SQLException e) {
 logger.error("druid configuration initialization filter : {0}", e);
 }
 datasource.setConnectionProperties(druidConfig.getConnectionProperties());
 return datasource;
}
启动时调⽤ initDruidDataSource() ⽅法构建不同的数据源。
 
@Bean(name = "primaryDataSource")
public DataSource dataSource() {
 return initDruidDataSource(druidOneConfig);
}
@Bean(name = "secondaryDataSource")
@Primary
public DataSource secondaryDataSource() {
 return initDruidDataSource(druidTwoConfig);
}
下⾯通过不同的数据源构建 entityManager ,最后注⼊到 Repository 的逻辑和以前⼀样,变化的地⽅只是在
数据源构建和开启监控⻚⾯。

开启监控⻚⾯

因为我们使⽤了原⽣的 Druid 包,因此需要⼿动开启监控、配置统计相关内容。
@Configuration
public class DruidConfiguration {
 @Bean
 public ServletRegistrationBean druidStatViewServlet() {
 ServletRegistrationBean servletRegistrationBean = new Ser
vletRegistrationBean<>(new StatViewServlet(), "/druid/*");
 servletRegistrationBean.addInitParameter("loginUsername", "admin");
 servletRegistrationBean.addInitParameter("loginPassword", "admin");
 servletRegistrationBean.addInitParameter("resetEnable", "false");
 return servletRegistrationBean;
 }
 @Bean
 public FilterRegistrationBean druidStatFilter() {
 FilterRegistrationBean filterRegistrationBean = new FilterR
egistrationBean<>(new WebStatFilter());
 filterRegistrationBean.setName("DruidWebStatFilter");
 filterRegistrationBean.addUrlPatterns("/*");
 filterRegistrationBean.addInitParameter("exclusions", "*.js,*.gif,*.jpg,*.
png,*.css,*.ico,/druid/*");
 return filterRegistrationBean;
 }
}
配置完成后,重启启动项⽬访问地址 http://localhost:8080/druid/sql.html 就可以看到有两个数据源的 SQL
作语句,证明多数据源 SQL 监控配置成功。
 
第 3-7 课:Spring Boot 集成 Druid 监控数据源_第4张图片
 
到此 JPA + Druid + 多数据源的集成完成了。

总结

Druid 是⼀款⾮常优秀的数据库连接池开源软件,使⽤ Druid 提供的 druid-spring-boot-starter 可以⾮常简单
地对 Druid 进⾏集成。 Druid 提供了很多预置的功能,⾮常⽅便我们对 SQL 进⾏监控、分析。 Druid
Spring Boot 2.0 的⽀持还不够完善,对于使⽤ Druid 的特殊场景,可以使⽤ Druid 原⽣包⾃⾏进⾏封装。
 
点击这⾥下载源码
 
 

你可能感兴趣的:(Spring,Boot,Druid,JPA,多数据源)