首先我们需要知道,硬盘分区的存在,是由硬盘的物理特性决定的,并不会因为不同的操作系统而有所改变。
请您把一块硬盘想象为一本完整的书,包括书名、索引和正文。书名相当于硬盘中的MBR,也就是主引导纪录。而正文,就是硬盘中纪录的数据,这也非常容易理解,且对于安装系统并没有什么影响。索引相当于硬盘中的分区表。如果没有分区表,操作系统不能够在硬盘上定位数据的位置。
由于历史的原因,硬盘中的分区表大小受到了限制,最多只可以容纳四个分区(主分区)。于是聪明的人们想到了一个变通的办法,就是利用其中的一个章节,来存储其它部分的索引。比如第一章是前言,第二章是其它部分的索引,我们翻到第二章,呵呵,这里是第二个索引,因为只有第一个索引受四个章节的限制,所以这个索引的内容可以非常的详尽。第二个索引就是分区表中的扩展分区了,其中定义的章节,就是硬盘中的逻辑分区。
明白了这一点,我们来看看Linux和Windows对于分区不同的表示方法:
可能您已经很熟悉Windows了,它使用盘符来表示分区,比如 C: D: E:,每一个分区使用一个盘符来标识,而且顺序可以颠倒, D:并不一定就是您系统中的第二个分区。(如果您给第二个分区分配最后一个硬盘盘符,把所有的盘符按顺序排列好,并且重装一次系统,您就会理解什么叫作“头疼”了)
而在Linux中,分区是这样表示的
/dev/hda /dev/hda1 /dev/hda2 /dev/hda5/ dev/sdb1
以 /dev/hda5 为例:
因为在Linux中,每一个设备都是用 /dev/ 文件夹下的一个文件来表示,所以 /dev/hda5 中, /dev/ 表示的是根目录下的dev目录,我们来看剩下的部分 hda5 。
前两位的字母 hd 表示这是一块IDE硬盘,如果是 sd ,则代表SATA硬盘,或者闪存等外设。第三位的字母 a 表示这是该类型接口上的第一个设备。同理, b、c、d…… 分别代表该类型接口上的第二三四……个设备。例如 hdc 表示第二个IDE接口上的主硬盘(每个IDE接口上允许一个主设备和一个从设备)。第四位的数字 5,并不表示这是该硬盘中的第5个分区,而是第一个逻辑分区。因为在Linux中,为了避免不必要的混乱,分区的顺序是不能改变的,分区标识则由它们在硬 盘中的位置决定。系统又要为所有可能的主分区预留标识,所以 1-4 一定不会是逻辑分区, 5 则是第一个逻辑分区,以此类推。
在Ubuntu系统的安装过程中,您需要选择系统目录的挂载点。
我们知道,安装Windows时,我们可以选择把系统安装在哪一个分区,把系统挂载到分区上。而在buntu/Linux中则相反,我们要把分区挂 载到系统中。当我们使用Windows的安装方式,把系统挂载到分区上,我们就不可能把Windows目录放在C盘,而把MyDocuments目录放到 其它分区。您或者出于习惯,或者出于数据安全方面的考虑,通常把文档放到其它分区中。但是Windows下很多软件保存文件的默认目录就是 MyDocument目录,这就比较不方便。
在系统安装完成后,我们还是可以将MyDocuments目录转移到其它分区中,不过有点麻烦,可能许多朋友还不知道怎么去作……而任何一种 Linux系统时,当然包括Ubuntu,我们可以在系统安装时就把分区挂载到目录下, /home 目录相当于Windows的MyDocuments ,我们可以把 /dev/hda5 挂载到此目录下,这样我们往 /home目录里存东西的时候,其实保存在第一个扩展分区中。如果再一次安装系统,只要把这个分区挂载到 /home目录下,那么进入新系统就像回家一样,真是太棒了。
理论上来讲,您可以将分区挂载到任何目录下面,您可以自定义挂载的路径。但是我们并不推荐您这么作,因为那没有任何意义。系统安装程序向您建议的挂载目录,通常也是我们向您建议的,现在我们来了解一下,这些目录通常都是用来作什么的:
/ 根目录,唯一必须挂载的目录。不要有任何的犹豫,选一个分区,挂载它!(在绝大多数情况下,有2G的容量应该是够用了。当然了,很多东西都是多多益善的:)
Swap 交换分区,可能不是必须的,不过按照传统,并且照顾到您的安全感,还是挂载它吧。它的容量只要大于您的物理内存就可以了,如果超过了您物理内存两倍的容量,那绝对是一种浪费。
/home 前面已经介绍过了,这是您的家目录,通常您自己创建的文件,都保存在这里,您最好给它分配一个分区
/usr 应用程序目录。大部分的软件都安装在这里。如果您计划安装许多软件,建议您也给它分配一个分区
/var 如果您要作一些服务器方面的应用,可以考虑给它分配一个较大的分区
/boot 如果您的硬盘不支持LBA模式(我想那不太可能:),您最好挂载它,如果挂载硬盘的第一个分区,应该比较稳妥。一般来说,挂载的分区只要100M大小就足够了
在文件系统这一环节中,我们建议您选择: ReiserFS
也许您注意到了,Windows中,盘符既用于表示硬件(硬盘上的分区),又用于表示系统中的路径。而Linux中,硬件就是硬件,路径就是路径,不会混淆在一起,简单直接!
可能您早已能够熟练的使用GUI(图形用户界面),例如您可以使用鼠标双击一个图标,来打开或者执行它。
我们来看这个过程: 您使用鼠标定位桌面上的一个程序图标,按下左键两次。系统读取鼠标指针的位置,并且判断该位置下图标的涵义,根据预设的双击动作,运行程序或者打开文件。
这一套GUI系统,便是一种Shell,它的作用是实现人机交互。
Linux中没有注册表这个概念。安装软件,理论上讲,只要拷贝所有相关文件,并运行它的主程序就可以了。
按照传统,一个软件通常分别拷贝到同级目录下的 bin、etc、lib、share等文件夹。
Bin 可执行文件,程序的可执行文件通常在这个目录下。在环境变量中设定搜索路径,就可以直接执行,而不需要定位其路径。
Etc 配置文件,大部分系统程序的配置文件保存于 /etc 目录,便于集中修改。
Lib 库文件,集中在一起,方便共享给不同程序。相较不同的软件单独保存库文件,能够节约一些磁盘空间。
Share 程序运行所需要的其它资源,例如图标、文本。这部分文件是专有的,不需要共享;而且目录结构相对复杂,混放在一起比较混乱,所以单独存放。
还有一些软件,占用一个单独的目录,所有的资源都在这个目录中。类似于Windows下的绿色软件,不推荐在Linux系统下这样作。
* 执行时,系统找不到可执行文件(搜索所有路径,资源开销过大,是不现实的),需要定位其位置,像这样 /home/user/bin/可执行文件 ,不够方便。
* 许多系统软件需要协作运行,配置文件分别保存,定位它们非常麻烦
* 如果程序使用的库文件,像图形库文件,都单独存放,那么磁盘空间的浪费会非常严重。
有一些大型软件,或者您布署的重要应用,您可以将它们单独安装在一个文件夹下。(通常源码安装支持这种方式,将在 软件安装 部分介绍)
对于绝大多数软件,我们建议您使用APT系统来安装它。在少数情况下,例如某软件没有以deb包的格式发布,或者需要定制适合自己的软件,您可以通过编译源代码的方式安装它。
首先需要下载软件的源码包,并且将它解包为一些源代码文件。并了便于管理,建议将下载的源码包移动到 /usr/local/src/ 目录下,并在这里解包。
sudo mv xxx.tar.gz /usr/local/src 移动源码包
cd /usr/local/src 进入“/usr/local/src/”目录
sudo tar -xzvf xxx.tar.gz 解包源码
cd xxx_ver/ 进行解包后的源码目录
源码目录中通常有一个 configure 脚本,用来配置即将开始的编译过程。您可以执行它
sudo ./configure [--prefix=/usr/loca/xxx ......]
它会自动检测软件的编译环境和依赖关系,并且生成 Makefile 文件。
使用带参数的命令 ./configure –help ,或者阅读 INSTALL 文件,查看该脚本允许的参数。例如使用
–prefix=/usr/local/xxx 参数,将软件的安装目录设定为 /usr/local/xxx/。(如果一定要将软件安装在单独目录下,建议您安装在这里)
现在执行 make 命令,系统会根据 Makefile 文件中的设定,通过 make 工具调用编译器和所需资源文件,将源代码编译成目标文件。
sudo make
执行 make install 命令, make 工具会自动连接目标文件和库文件,将最终生成的文件拷贝到 Makefile 文件设定的路径中,并且完成更改文件的属性,删除残留文件等活动。
sudo make install
现在,编译安装已经完成,为了更方便的使用它,需要给程序的可执行文件作一个符号链接。
sudo ln -sf /usr/local/xxx/可执行文件 /usr/local/bin/可执行文件
Tip:为了顺利的进行编译,至少需要安装 build-essential 软件包。
sudo apt-get install build-essential
以下为Ubuntu目录的主要目录结构,您稍微了解它们都包含了哪些文件就可以了,不需要记忆。
/ 根目录
│
├boot/ 启动文件。所有与系统启动有关的文件都保存在这里
│ └grub/ Grub引导器相关的文件
│
├dev/ 设备文件
├proc/ 内核与进程镜像
│
├mnt/ 临时挂载
├media/ 挂载媒体设备
│
├root/ root用户的 HOME目录├home/│├user/普通用户的 HOME目录
│ └…/
│
├bin/ 系统程序
├sbin/ 管理员系统程序
├lib/ 系统程序库文件
├etc/ 系统程序和大部分应用程序的全局配置文件
│ ├init.d/ SystemV风格的启动脚本
│ ├rcX.d/ 启动脚本的链接,定义运行级别
│ ├network/ 网络配置文件
│ ├X11/ 图形界面配置文件
├usr/
│ ├bin/ 应用程序
│ ├sbin/ 管理员应用程序
│ ├lib/ 应用程序库文件
│ ├share/ 应用程序资源文件
│ ├src/ 应用程序源代码
│ ├local/
│ │ ├soft/ 用户程序
│ │ └…/ 通常使用单独文件夹
│ ├X11R6/ 图形界面系统
│
├var/ 动态数据
│
├temp/ 临时文件
├lost+found/ 磁盘修复文件
Linux系统主要通过以下步骤启动:
1.读取MBR的信息,启动Boot Manager
Windows使用NTLDR作为Boot
Manager,如果您的系统中安装多个版本的Windows,您就需要在NTLDR中选择您要进入的系统。
Linux通常使用功能强大,配置灵活的GRUB作为Boot Manager,我们将在启动管理章节中向您介绍它的使用方式。
2.加载系统内核,启动init进程
init进程是Linux的根进程,所有的系统进程都是它的子进程。
3.init进程读取 /etc/inittab 文件中的信息,并进入预设的运行级别,按顺序运行该运行级别对应文件夹下的脚本。脚本通常以 start 参数启动,并指向一个系统中的程序。
通常情况下, /etc/rcS.d/ 目录下的启动脚本首先被执行,然后是 /etc/rcN.d/ 目录。例如您设定的运行级别为3,那么它对应的启动目录为 /etc/rc3.d/ 。
4.根据 /etc/rcS.d/ 文件夹中对应的脚本启动Xwindow服务器 xorg
Xwindow为Linux下的图形用户界面系统。
5.启动登录管理器,等待用户登录
Ubuntu系统默认使用GDM作为登录管理器,您在登录管理器界面中输入用户名和密码后,便可以登录系统。(您可以在 /etc/rc3.d/ 文件夹中找到一个名为 S13gdm 的链接)
更改运行级别
在 /etc/inittab 文件中找到如下内容:
# The default runlevel.
id:2:initdefault:
这一行中的数字 2 ,为系统的运行级别,默认的运行级别涵义如下:
0 关机 1 单用户维护模式 2~5 多用户模式 6 重启
!无论任何情况下,修改配置文件之前,先备份它!
建议使用这个命令: sudo cp xxx xxx_date +%y%m%d_%H:%M
。
当然这很麻烦,您可以新建一个名为 bak 的文件,内容如下:
#!/bin/bash
sudo cp $1 $1_`date +%y%m%d_%H:%M`
把它放在您能够记住的目录下,比如 /home ,执行命令 sh /home/bak xxx ,就可以将当前文件夹下的文件 xxx 另存为 xxx_yymmdd_HH:MM 的格式了
系统初始化
/etc/inittab 运行级别、控制台数量 /etc/timezone 时区 /etc/inetd.conf 超级进程
文件系统
/etc/fstab 开机时挂载的文件系统 /etc/mtab 当前挂载的文件系统
用户系统
/etc/passwd 用户信息 /etc/shadow 用户密码 /etc/group 群组信息
/etc/gshadow 群组密码 /etc/sudoers Sudoer列表(请使用“visudo”命令修改此文件,而不要直接编辑)
Shell
/etc/shell 可用Shell列表 /etc/inputrc ReadLine控件设定 /etc/profile 用户首选项
/etc/bash.bashrc bash配置文件
系统环境
/etc/environment 环境变量 /etc/updatedb.conf 文件检索数据库配置信息 /etc/issue 发行信息
/etc/issue.net /etc/screenrc 屏幕设定
网络
/etc/iftab 网卡MAC地址绑定 /etc/hosts 主机列表 /etc/hostname 主机名
/etc/resolv.conf 域名解析服务器地址 /etc/network/interfaces 网卡配置文件
用户配置文件
/etc/ 目录下的文件,只有root用户才有权修改。应用软件的全局配置文件,通常普通用户也不能够修改,如果要通过配置软件,来适应特殊需求,您可以修改用户配置文件。
用户配置文件通常为全局配置文件的同名隐藏文件,放在$HOME目录下,例如:
/etc/inputrc /home/user/.inputrc
/etc/vim/vimrc /home/user/.vim/vimrc
也有少数例外,通常是系统程序
一些细节
一个文件主要包含下列属性, ls -l
111 101 101
其中,第一组为归属用户的权限,第二组为归属群组的权限,第三组为其它用户群组的权限。user为文件的归属用户,group为文件的归属群组,date为日期信息,filename为文件名。
对于文件夹,必须拥有它的可执行权限,才能够使用 cd 命令进入该文件夹;拥有可读权限,才能够使用 ls 命令查看该文件夹的文件列表。
root用户拥有最高权限。
可以使用3位的二进制数字来描述一组权限,某一权限对应的数字为1,则表示具有该种权限,为0,则不具有该种权限。
使用二进制数字来描述一组权限,虽然非常直观,但是3组权限需要用9位数来表示,使用不够方便。因此我们将三组权限使用3位8进制数字来表示。它们的对应关系为:
r 100 4
w 010 2
x 001 1
将这三位8进制数字相加的结果,就可以表示该组权限的具体内容,例如:
7=4+2+1=rwx
5=4+1=rx
755=4+2+1 4+1 4+1=rwx r-x r-x
还可以使用 a 、 u 、 g 、 o 表示归属关系,使用 = 、 + 、 - 表示权限变化,使用 r 、 w 、 x 表示权限内容,
a 所有用户 u 归属用户 g 归属群组 o 其它用户
= 具有权限 + 增加权限 - 去除权限
r 可读权限 w 可写权限 x 可执行权限
例如:
a+x 给所有用户增加可执行权限
go-wx 将归属群组和其它用户的可写、可执行权限去掉
u=rwx 归属用户具有可读、可写、可执行权限
chmod <权限表达式> <文件|目录>
更改文件的权限。权限的表达式可以使用三位8进制数字表示,或者使用 augo +-= rxw-s 来表示
-R 递归
-v 显示过程
-c 类似“-v”,仅显示更改部分
–reference=<参考文件或目录> 以指定文件为参考更改权限
示例:
chmod -R a+x path
chmod -Rv 755 path
chown <归属用户>[:归属群组] <文件|目录>
更改文件的归属用户。可以使用用户名或者UID
-R 递归 -v 显示过程 -c 类似 -v ,仅显示更改部分
–reference=<参考文件或目录> 以指定文件为参考更改权限
示例:
chown user:admin path chown -R user.admin path chown user path
chgrp <归属群组> <文件|目录>
更改文件的归属群组。可以使用群组名或者GID
参数同上
SUID、SGID、Sticky bit
某些情况下,需要以可执行文件归属用户的身份执行该文件,可以为该文件设置SUID。同样,设置SGID能够以该文件归属群组的身份执行它。
例如:用户自行设定密码。出于安全方面的考虑, /etc/shadow 只能由root用户直接修改。
-rw——- root root /etc/shadow
这个时候,可以为程序 /usr/bin/passwd
设置SUID,当普通用户执行“passwd”命令时,便能够以该程序归属用户root的身份修改 /etc/shadow
文件。而“passwd”程序自身带有身份验证机制,不能通过验证时拒绝执行,从而保证了安全。
ls -l /usr/bin/passwd
-r-s–x–x root root /usr/bin/passwd
我们发现,归属用户的可执行权限位使用 s ,表示SUID。同样,归属群组的可执行权限位使用 s ,表示SGID。任何用户或群组都拥有
其它用户 的权限,所以不需要以 其它用户 身份执行文件,其它用户的可执行权限位便不会出现 s 。该权限位可能出现的属性为 t
,也就是粘着位Sticky bit。
ls -ld /tmp
drwxrwxrwt root root /tmp
粘着位表示任何用户都可能具有写权限,但只有该归属用户或root用户才能够删除
SUID、SGID、Sticky bit也可以像权限一样,使用一个八进制数表示,如下:
4 SUID
2 SGID
1 Sticky bit
通过在“chmod”命令中使用4个八进制数的表达式,如 4755 ,用第一位表示SUID、SGID、或Sticky bit,便能够为文件设置这些特殊权限。示例:
chmod -R 4755 path
lsattr [路径]
查看文件的特殊属性
-a 全部显示 -d 只显示目录 -R 递归
特殊属性包括:
a:仅供附加用途 b:不更新最后存取时间 c:压缩后存放 d:排除在倾倒操作之外
i:不得任意更动文件或目录 s:保密性删除文件或目录 S:即时更新文件或目录
u:预防以外删除
chattr +|-|=<属性> <路径>
更改文件特殊属性
-R 递归 -V 显示过程
tar -c|x|u|r|t[z|j][v] -f <归档文件> [未打包文件]
将多个文件打包为一个归档文件,可以在打包的同时进行压缩。支持的格式为tar(归档)、gz(压缩)、bz2(压缩率更高,比较耗时)
-c 创建 -x 解包 -u 更新 -r 添加 -t 查看
-d 比较压缩包内文件和文件 -A 将tar文件添加到归档文件中 -z 使用gz压缩格式
-j 使用bz2压缩格式 -v 显示过程 -f <文件名> 归档文件的文件名
-C <解压路径> 将压缩包中的文件解压到指定目录
[未打包文件] 创建、更新时必须填写
示例:
tar -zcvf xxx.tar.gz xxx/ xxx1 xxx2 xxx3 多个待打包文件以空格分隔
tar -zcvf xxx.tar.gz /home/user/xxx/ 使用绝对路径打包,解包也使用绝对路径
tar -zxvf xxx.tar.gz 按相对路径解包到当前目录下,或按绝对路径解包
tar -zcvf xxx.tar.gz xxx | split -b 1m 打包后,使用split分割为1m大小的多个文件
其它参数
-P 使用绝对路径压缩时,保留根目录“/” -W 校验 -p 还原文件权限
-w 询问用户 –totals 统计 -T <表达式> 处理符合条件的文件
-X <表达式> 排除符合条件的文件
zip [参数] <压缩包> <源文件>
使用zip格式打包文件
-r 递归,将指定目录下的所有文件和子目录一并处理 -S 包含系统和隐藏文件
-y 直接保存符号连接,而非该连接所指向的文件 -X 不保存额外的文件属性
-m 将文件压缩并加入压缩文件后,删除源文件
-<压缩级别> 1~9,数字越大,压缩率越高
-F 尝试修复已损坏的压缩文件 -T 检查备份文件内的每个文件是否正确无误
-q 不显示指令执行过程 -g 将文件压缩后附加在既有的压缩文件之后,而非另行建立新的压缩文件
-u 更新压缩包内文件
-f 更新压缩包内文件。如果符合条件的文件没有包含在压缩包中,则压缩后添加
-$ 保存第一个被压缩文件所在磁盘的卷标 -j 只保存文件名称及其内容
-D 压缩文件内不建立目录名称 -i <表达式> 压缩目录时,只压缩符合条件的文件
-x <表达式> 排除符合条件的文件 -n <文件名后缀> 排除指定文件名后缀的文件
-b <缓存路径> 指定临时文件目录 -d <表达式> 从压缩文件内删除指定的文件
-t <日期时间> 把压缩文件的日期设成指定的日期
-o 以压缩文件内拥有最新更改时间的文件为准,将压缩文件的更改时间设成和该文件相同
-A 调整可执行的自动解压缩文件 -c 替每个被压缩的文件加上注释
-z 替压缩文件加上注释 -k 使用MS-DOS兼容格式的文件名称。
-l 压缩文件时,把LF字符置换成LF+CR字符。 -ll 压缩文件时,把LF+CR字符置换成LF字符。
unzip [参数] <压缩文件> [压缩包中将被释放的文件]
解压zip压缩包文件
-P <密码> zip压缩包的密码 -d <路径> 指定解压路径 -n 解压缩时不覆盖原有文件
-f 覆盖原有文件 -o 不经询问,直接覆盖原有文件
-u 覆盖原有文件,并将压缩文件中的其他文件解压缩到目录中
-l 显示压缩文件内所包含的文件 -t 检查压缩文件是否正确 -z 显示压缩包注释
-Z unzip -Z等于执行zipinfo指令 -j 不处理压缩文件中原有的目录路径
-C 压缩文件中的文件名称区分大小写 -L 将压缩文件中的全部文件名改为小写
-s 将文件名中的空格转换下划线 -X 解压缩时保留文件原来的UID/GID
-q 执行时不显示任何信息 -v 执行是时显示详细的信息
-c 将解压缩的结果显示到屏幕上,并对字符做适当的转换
-p 与-c参数类似,会将解压缩的结果显示到屏幕上,但不会执行任何的转换
-a 对文本文件进行必要的字符转换 -b 不要对文本文件进行字符转换
-x <表达式> 处理里排除压缩包中的指定文件 -M 将输出结果送到more程序处理
7z|7za <子命令> [参数] <压缩包> [文件]
子命令
a 添加 d 删除 e 解压 x 带路径解压 l 列表查看 t 测试 u 更新
参数
-m<压缩方式> -m0=<压缩算法> 默认使用lzma -mx=<1~9> 压缩级别
-mfb=64 number of fast bytes for LZMA = 64 -md=<字典大小> 设置字典大小,例如 -md=32m
-ms=
whereis <程序名称>
查找软件的安装路径
-b 只查找二进制文件 -m 只查找帮助文件 -s 只查找源代码 -u 排除指定类型文件
-f 只显示文件名 -B <目录> 在指定目录下查找二进制文件
-M <目录> 在指定目录下查找帮助文件 -S <目录> 在指定目录下查找源代码
locate <文件名称>
在文件索引数据库中搜索文件
-d <数据库路径> 搜索指定数据库
updatedb 更新文件索引数据库
find [路径] <表达式>
查找文件
-name <表达式> 根据文件名查找文件
-iname <表达式> 根据文件名查找文件,忽略大小写
-path <表达式> 根据路径查找文件
-ipath <表达式> 根据路径查找文件,忽略大小写
-amin <分钟> 过去N分钟内访问过的文件
-atime <天数> 过去N天内访问过的文件
-cmin <分钟> 过去N分钟内修改过的文件
-ctime <天数> 过去N天内修改过的文件
-anewer <参照文件> 比参照文件更晚被读取过的文件
-cnewer <参照文件> 比参照文件更晚被修改过的文件
-size <大小> 根据文件大小查找文件,单位b c w k M G
-type <文件类型> 根据文件类型查找文件。b 块设备 c 字符设备 d 目录 p 管道文件 f 普通文件 l 链接 s 端口文件
-user <用户名> 按归属用户查找文件
-uid 按UID查找文件
-group <群组名> 按归属群组查找文件
-gid 按GID查找文件
-empty 查找空文件
grep <字符串>|”<正则表达式>” [文件名]
一些细节:
Linux中,设备用/dev/目录下的文件表示。例如
/dev/hda1 第一块硬盘的第一主分区
/dev/hdb5 第二块硬盘的第一逻辑分区
/dev/sda4 第一块SATA硬盘的第四主分区,或者扩展分区
/dev/null 黑洞设备
关于磁盘设备,详见 分区概念
mount <设备文件> [挂载路径]
挂载文件系统
-t 指定文件系统的类型。通常不必指定,mount自动检测。
fdisk -l
查看所有磁盘分区信息
ifconfig
配置网络接口
-a 显示所有网络接口
ifconfig <网卡> up|down
激活|禁用网卡
示例:
sudo ifconfig eth0 up
ifconfig <网卡> add [IP地址] [ netmask <子网掩码> ]
给网卡指定IP地址或子网掩码
route
配置路由及网关
route add -net <路由地址> gw <网关地址> [ netmask <子网掩码> ] dev <网卡>
指定路由及网关
route del -net <网关地址> gw <网关地址> [ netmask <子网掩码> ]
删除路由及网关
ip
配置网络
子命令:
link 网卡配置 address 配置地址。相当于 ifconfig route 配置路由。相当于 route
参数:
show 显示(默认) set 设置 add 添加 del 删除
示例:
ip link show 显示网卡配置
ip link set eth0 name xxx 重命名网络接口
ping