- 使用BLSTM自动评估句子级构音障碍的可理解性
帅小柏
声音的未来:语音识别文献解读深度学习人工智能分类
使用BLSTM自动评估句子级构音障碍的可理解性原文:AutomaticAssessmentofSentence-LevelDysarthriaIntelligibilityUsingBLSTM引言构音障碍简介构音障碍的定义与特征构音障碍是一种由神经原因引起的运动性言语障碍表现为肌肉无力、瘫痪或协调不良,导致言语清晰度下降可理解性的重要性可理解性是衡量言语障碍严重程度的重要指标自动评估可帮助语言病理
- jieba库词频统计_jieba分词器(应用及字典的补充)及文档高频词提取实战
袁圆园建建
jieba库词频统计
jieba分词器是Python中最好的中文分词组件,本文讲解一下jieba分词器及其应用。1、jieba分词器的分词模式jieba分词器提供了三种常用的分词模式1、精确模式:将句子按照最精确的方法进行切分,适合用于进行文本分析;2、全模式:将句子当中所有可以成词的词语都扫描出来,分词速度很快但容易产生歧义;3、搜索引擎模式:在精确模式分词的基础上,将长的句子再次进行切分,提高召回率,适用于搜索引擎
- NLU-预训练模型-2018:Bert(二)【“Masked LM”缺点:①预训练与微调不一致;②忽略了掩码位置间的依赖关系】【复杂度:O(n^2·d);n:输入序列长度(规定最长512)】
u013250861
#NLP/词向量_预训练模型bert人工智能深度学习
五、BERT中的词嵌入1、为什么要使用BERT的嵌入使用BERT从文本数据中提取特征,即单词和句子的嵌入向量。我们可以用这些词和句子的嵌入向量做什么?首先,这些嵌入对于关键字/搜索扩展、语义搜索和信息检索非常有用。例如,如果你希望将客户的问题或搜索与已经回答的问题或文档化的搜索相匹配,这些表示将帮助准确的检索匹配客户意图和上下文含义的结果,即使没有关键字或短语重叠。其次,或许更重要的是,这些向量被
- 【DeepSeek干货总结】对不同类型学术内容进行润色的顶级提示词汇总!
AIWritePaper官方账号
DeepSeekPromptAIWritePaperAIWritePaperdeepseek深度学习人工智能AIGC论文润色
目录1.英文润色2.中文润色3.SCI润色4.润色Prompt汇总连贯性与句子逻辑提示词多参考版本提示词语法矫正提示词润色内容定位提示词修改建议提示词大家好这里是AIWritePaper官方账号!AIWritePaper官网AIWritePaper宝子们在写学术论文的过程中要想让DeepSeek发挥出最佳效能,尤其在进行文本润色时,精确和具体的提示词至关重要。很多宝子们在请求DeepSeek文本润
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 【Image captioning-RS】论文12 Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning
CV视界
Imagecaptioning学习transformer深度学习人工智能
1.摘要遥感图像(RSI)字幕生成旨在为遥感图像生成有意义且语法正确的句子描述。然而,相比于自然图像字幕,RSI字幕生成面临着由于RSI特性而产生的额外挑战。第一个挑战源于这些图像中存在大量物体。随着物体数量的增加,确定描述的主要焦点变得越来越困难。此外,RSI中的物体通常外观相似,进一步复杂化了准确描述的生成。为克服这些挑战,我们提出了一种基于先验知识的transformer(PKG-Trans
- 一文读懂stm32和51单片机的区别
对error说不
stm3251单片机嵌入式硬件
一、引言在嵌入式系统开发领域,STM32和51单片机是两款被广泛使用的微控制器。51单片机以其简单易学、成本低廉的特点,在早期的电子开发中占据了主导地位;而STM32作为后起之秀,凭借其高性能、丰富的外设和强大的处理能力,逐渐成为了中高端应用的首选。本文将从多个方面详细阐述STM32和51单片机的区别,并给出相应的代码示例进行对比。二、硬件架构2.1内核51单片机:采用8位的8051内核,数据处理
- 处理文本的原则
the only KIrsTEN
语音和文本处理(Python)
没有字符编码方案本身就是目的:它是一种启用计算机上有用的文本处理。•计算机预期支持的基本低级文本处理包括:使字符可见(包括连字、上下文形式等)渲染时断线(包括断字)修改外观,例如点大小、字距、下划线、倾斜和重量(轻,半,粗体等)确定“单词”和“句子”等单位在选择和突出显示文本等过程中与用户交互通过插入和删除接受键盘输入和编辑存储的文本比较操作中的文本,例如排序或确定排序顺序两串分析文本内容,例如拼
- Elasticsearch:为推理端点配置分块设置
Elastic 中国社区官方博客
ElasticsearchAIElasticelasticsearch大数据搜索引擎人工智能全文检索数据库ai
推理端点对一次可处理的文本量有限,具体取决于模型的输入容量。分块(Chunking)是指将输入文本拆分成符合这些限制的小块的过程,在将文档摄取到semantic_text字段时会进行分块。分块不仅有助于保持输入文本在可处理范围内,还能使内容更加易读。相比返回一整篇长文档,在搜索结果中提供最相关的文本片段更有价值。每个分块都会包含文本片段以及从中生成的对应嵌入。默认情况下,文档会被拆分为句子(sen
- 小程序生命周期三段式结构口诀
向贤
小程序前端开发技术面试小程序
文章目录一、应用大总管[应用生命周期(AppLevel)]1.冷启热启错不慌(App.onLaunch/onShow/onError)2.切后隐身守空房(App.onHide)3.未寻页面有担当(App.onPageNotFound)二、页面五部曲[页面生命周期(PageLevel)]1.加载登场秀(Page.onLoad)2.现身就绪走(Page.onShow→onReady)3.隐身卸载收(P
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- Python个人学习笔记(2):编程入门知识与基础语法介绍
NEET_LH
樵夫老师Python零基础课程个人学习笔记python学习笔记
一、注释(一)作用1.对代码进行解释和说明避免自己忘了写的代码是做什么的——写给人看的,机器不运行不要去注释你代码做了什么,而要去注释我的代码为什么要这么做。用于记录思路、实现方法、代码功能注释很重要,大厂很重视,尤其日企2.调试代码报错的一篇代码,从下到上一句一句加#,依次运行,如果某行代码加了#后,程序运行成功,那么就是这行有问题,但这个方法不好。(二)注释方法1.单行注释==句子前加#快捷键
- 大模型工程师学习日记(十四):检索增强生成(RAG)
MMMMMMMay Love Code
学习langchain深度学习人工智能开发语言
如何递归分割文本递归分割(recursively),这个文本分割器是用于通用文本的推荐工具。它接受一个字符列表作为参数。它会按顺序尝试在这些字符上进行分割,直到块足够小。默认的字符列表是["\n\n","\n","",""]。这样做的效果是尽可能保持所有段落(然后是句子,再然后是单词)在一起,因为这些通常看起来是语义上相关的文本块。文本如何分割:根据字符列表。块大小如何衡量:根据字符数量。下面我们
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 毕业论文AIGC高?5个方法有效降低AI率,消除AI痕迹!
我是宝库
AIGC人工智能经验分享论文抽检毕业论文AIGC检测学习方法
现在很多学校要求毕业论文基本都要检测AIGC了。AIGC是指人工智能生成的内容,现在无论是毕业论文还是期刊投稿,都会检测论文是否由AI生成的,比如知网、维普、万方、Turnitin、MasterAI率检测等。如果你的论文使用了AI工具辅助写作,自己提前进行AIGC检测,必要时降低AIGC率是很有必要的,那么,如何降低AIGC率呢?分享5种方法:1、改写句子结构。AI生成的句子通常比较长,句子结构僵
- 论文摘要生成器:用TextRank算法实现文献关键信息提取
Atlas Shepherd
python算法自然语言处理python信息可视化
我们基于python代码,使用PyQt5创建图形用户界面(GUI),同时支持中英文两种语言的文本论文文献关键信息提取。PyQt5:用于创建GUI应用程序。jieba:中文分词库,用于中文文本的处理。re:正则表达式模块,用于文本清理和句子分割。numpy:提供数值计算能力,如数组操作、矩阵运算等,主要用于TextRank算法的实现。importsysimportreimportjiebaimpor
- 句子改写器在线转换的原创性提升策略
hjehheje
算法人工智能python
在文本处理领域,"句子改写器在线转换"的原创性提升并非单纯依赖工具升级,而是需要融合算法优化、人工干预与策略设计的系统工程。以下从技术底层到应用层拆解核心方法,辅以实验数据验证其可行性:一、语义拓扑重构技术(SemanticTopologyReconstruction)原理突破传统同义词替换仅影响表层词汇(LexicalLevel),而STR技术通过依存句法分析,构建句子的语义网络拓扑图,对主谓宾
- DeepSeek源码解析(2)
白鹭凡
deepseekai
Tensor(张量)的介绍在计算机科学和机器学习领域,“张量”(Tensor)是一个数学概念,它被用来表示多维数组。在大模型(如深度学习模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。例如,在图像处理中,一张图片可以被表示为一个三维张量(高度、宽度、颜色通道数),而在自然语言处理中,一段文本可以被编码为一系列词向量组成的二维张量(句子长度、词向量维度
- 培养哪些特质才能在工作中出类拔萃?
晏小北
求职招聘经验分享学习方法职场和发展
芯片工程师以脱口秀领域顶尖人物——李诞为例,聊聊强者的共性。(1)常人难以想象的工作量无论哪个领域,天赋当然重要。但,以大多数人的努力程度,压根到不了拼天赋的程度。你的量够吗?能不能做到每天起来,先写5个段子,再玩手机?能不能做到每天睡前,把5个段子改得更好,再睡觉?全部的核心秘密就是量。肌肉是怎么长出来的?是把它拉伤了,才能长出来。脑子也是这样。每天的创作,就是拉伤褶皱的过程。痛苦的时候,多喝点
- PTA天梯赛-L2-4 秀恩爱分得快
乔梦圆的博客
天梯赛题字符串算法c++
古人云:秀恩爱,分得快。互联网上每天都有大量人发布大量照片,我们通过分析这些照片,可以分析人与人之间的亲密度。如果一张照片上出现了K个人,这些人两两间的亲密度就被定义为1/K。任意两个人如果同时出现在若干张照片里,他们之间的亲密度就是所有这些同框照片对应的亲密度之和。下面给定一批照片,请你分析一对给定的情侣,看看他们分别有没有亲密度更高的异性朋友?输入格式:输入在第一行给出2个正整数:N(不超过1
- ——当机器开始"思考",人类终于读懂了自己的大脑
人工智能机器学习
第一层突破:AI让我们看见"思维的源代码"想象一下,你正在教ChatGPT写诗——当它从"枯藤老树昏鸦"的堆砌,突然产出"月光在二进制河流里流淌"的句子时,这不仅是算法的胜利,更是一面照向人类思维的魔镜。科学家发现,AI学习语言的方式竟与婴儿惊人相似:✅模式捕捉:像人类从环境声音中提取词汇✅联想迭代:用已知概念嫁接新知识(比如用"电"理解"闪电网络")✅创造性错误:AI的"幻觉"对应人脑的直觉跳跃
- python基础题目练习19
码卡巴卡bug
python算法数据结构
说反话-加强版给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出。输入格式:测试输入包含一个测试用例,在一行内给出总长度不超过500000的字符串。字符串由若干单词和若干空格组成,其中单词是由英文字母(大小写有区分)组成的字符串,单词之间用若干个空格分开。输出格式:每个测试用例的输出占一行,输出倒序后的句子,并且保证单词间只有1个空格。输入样例:HelloWorldHereICome输出样
- 关于自然语言处理(三)深度学习中的文字序列数据的分词操作
MatrixSparse
大模型人工智能自然语言处理深度学习人工智能
深度学习中的文字序列数据二维文字序列在文字数据中,样本与样本之间的联系是语义的联系,语义的联系即是词与词之间、字与字之间的联系,因此在文字序列中每个样本是一个单词或一个字(对英文来说大部分时候是一个单词,偶尔也可以是更小的语言单位,如字母或半词),故而在中文文字数据中,一张二维表往往是一个句子或一段话,而单个样本则表示单词或字。此时,不能够打乱顺序的维度是vocab_size,它代表了一个句子/一
- 【设计模式】——解释器模式(Interpreter Pattern)
J^T
设计模式C/C++解释器模式设计模式c++系统架构
目录引言一、解析器模式的基本概念核心思想解析器模式结构UML图应用场景二、解析器模式的优点与缺点优点缺点三、C++实现算术表达式解释器1.定义抽象表达式2.实现终结符表达式3.实现非终结符表达式4.构建和解释表达式四、总结引言在软件开发中,设计模式是解决常见软件设计问题的一种成熟方案。解释器模式(InterpreterPattern)是一种行为型设计模式,它提供了一种解释语言句子或表达式的方法。这
- Manus:AI Agent的未来,还是一场营销秀?
人工智能机器学习深度学习
作者:TechubNews今天,AI圈子里掀起了波澜。一个名为Manus的产品,凭借一部全英文的宣传片和邀请码制的发布方式,迅速吸引了大量关注。这个由中国团队开发的AIAgent,被官方称为“全球首个通用Agent”,仿佛一夜之间,OpenAI和Anthropic的Operator们都被淘汰了。Manus发布后,迅速在一个小圈子内引发了“炸裂”式的传播,类似于DeepSeek的现象。然而,Manu
- Word2Vec向量化语句的计算原理
堕落年代
AIword2vec人工智能机器学习
一、Word2Vec的核心理念Word2Vec由Google团队于2013年提出,是一种通过无监督学习生成词向量的模型。其核心思想是“相似的词拥有相似的上下文”,通过上下文关系捕捉词汇的语义和语法特征。生成的向量具有低维(通常100-300维)、连续且稠密的特点,解决了传统One-Hot编码的高维稀疏和语义缺失问题。二、向量化的核心步骤(以Skip-Gram模型为例)示例句子假设句子为:“Theq
- 大语言模型中的 Token:它们是什么,如何工作?
运维小子
语言模型人工智能自然语言处理
引言如果你使用过ChatGPT这样的AI工具,你可能会好奇:它是如何理解并生成文字的?大语言模型(LLM,LargeLanguageModel)并不是直接处理整个句子或文章,而是拆分成一个个Token(标记)来进行计算。那么,什么是Token?它们在大语言模型中起到什么作用?这篇文章将用通俗易懂的语言帮你解开这些谜团。1.什么是Token?在大语言模型的世界里,Token(标记)是文本的最小单位,
- 详解DeepSeek模型底层原理及和ChatGPT区别点
瞬间动力
语言模型机器学习AI编程云计算阿里云
一、DeepSeek大模型原理架构基础DeepSeek基于Transformer架构,Transformer架构主要由编码器和解码器组成,在自然语言处理任务中,通常使用的是Transformer的解码器部分。它的核心是自注意力机制(Self-Attention),这个机制允许模型在处理输入序列时,关注序列中不同位置的信息。例如,在处理句子“Thecatchasedthemouse”时,自注意力机制
- 2024第18届中国(大连)国际纺织服装供应链博览会
aczl168
其他
2024第18届中国(大连)国际纺织服装供应链博览会The18thDalianInternationalTextileandGarmentSupplyChainExpo2024开展时间:2024年8月6-8日展览地点:大连世界博览广场(沙河口区会展路18号)支持单位:天津市服装商会河北省服装行业协会承办单位:企阳会展集团天津星际展览服务有限公司大连星华展览有限公司同期活动:FIC创意主题时装秀服装
- 语义向量模型全解:从基础到现在的deepseek中的语义向量主流模型
来自于狂人
人工智能语言模型
一、语义向量模型:自然语言处理的基石语义向量模型(SemanticVectorModel)是自然语言处理(NLP)的核心技术,它将词汇、句子或文档映射为高维向量,在数学空间中量化语义信息。通过向量距离(如余弦相似度)衡量语义的相似性,支撑了搜索引擎、情感分析、机器翻译等实际应用。1.1发展简史1980s~2000s:基于统计的浅层模型,如TF-IDF(直接表征词的重要性)、LSA(通过矩阵分解降维
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu