该文章不知道从哪里抄的,忘记出处了,放在电脑中很久了。里面略有改动。若有侵权,请告诉我删除。
IEEE 802.15.4标准概述
IEEE 802.15.4网络是指在一个POS(10米左右范围)内使用相同的无线信道,并通过IEEE 802.15.4标准相互通信的一组设备,这些设备的集合成为“IEEE 802.15.4网络”,又名LR-WPAN网络。
在“IEEE 802.15.4网络”网络中,根据设备的通信能力,分为全功能设备(full-function device , FFD)和精简功能设备(reduced-function device , RFD)。
注意:FFD设备之间以及FFD设备与RFD设备之间都可以通信。而RFD设备之间不能直接通信,只能通过一个FFD设备向外转发数据。这个与RFD相关联的FFD设备称为该RFD的协调器(coordinator)。
RFD设备主要用于简单的控制应用,如灯的开关、被动式红外线传感器等,特点是传输的数据量较少,对传输资源和通信资源占用不多,这样RFD设备可以采用非常廉价的实现方案。
在IEEE 802.15.4网络中,有一个称为PAN网络协调器(PAN coordinator)的FFD设备,它是这个网络中的主控制器。PAN网络协调器(以后简称网络协调器)除了直接参与应用以外,还要完成成员身份管理、链路状态信息管理以及分组转发等任务。
无线通信信道的特征是动态变化的。节点位置或天线方向的微小改变、物体移动等周围环境的变化都有可能引起通信链路信号强度和质量的剧烈变化,因而无线通信的覆盖范围不是确定的。这就造成了网络中设备的数量以及它们之间关系的动态变化。
随着通信技术的迅速发展,人们提出了在自身附近几米范围之内通信的需求,这样就出现了个人区域网络(personal area network, PAN)和无线个人区域网络(wireless personal area network, WPAN)的概念。WPAN网络为近距离范围内的设备建立无线连接,把几米范围内的多个设备通过无线方式连接在一起,使它们可以相互通信甚至接入LAN或Internet。1998年3月,IEEE 802.15工作组。这个工作组致力于WPAN网络的物理层(PHY)和媒体访问层(MAC)的标准化工作,目标是为在个人操作空间(personal operating space, POS)内相互通信的无线通信设备提供通信标准。POS一般是指用户附近10米左右的空间范围,在这个范围内用户可以是固定的,也可以是移动的。
在IEEE 802.15工作组内有四个任务组(task group, TG),分别制定适合不同应用的标准。这些标准在传输速率、功耗和支持的服务等方面存在差异。下面是四个任务组各自的主要任务:
(1)任务组TG1:又称IEEE 802.15.1标准,又称蓝牙无线个人区域网络标准。这是一个中等速率、近距离的WPAN网络标准,通常用于手机、PDA等设备的短距离通信。
(2)任务组TG2:又称IEEE 802.15.2标准,研究IEEE 802.15.1与 IEEE 802.11(无线局域网标准,WLAN)的共存问题。
(3)任务组TG3:又称IEEE 802.15.3标准,研究高传输速率无线个人区域网络标准。该标准主要考虑无线个人区域网络在多媒体方面的应用,追求更高的传输速率与服务品质。
(4)任务组TG4:又称IEEE 802.15.4标准,针对低速无线个人区域网络(low-rate wireless personal area network, LR-WPAN)制定标准。该标准把低能量消耗、低速率传输、低成本作为重点目标,旨在为个人或者家庭范围内不同设备之音的低速互连提供统一标准。任务组TG4定义的LR-WPAN网络的特征与传感器网络有很多相似之处,很多研究机构把它作为传感器的通信标准,这就是ZigBee的应用标准,我们需要重点了解。LR-WPAN网络是一种结构简单、成本低廉的无线通信网络,它使得在低电能和低吞吐量的应用环境中使用无线连接成为可能。与WLAN相比,LR-WPAN网络只需很少的基础设施,甚至不需要基础设施。IEEE 802.15.4标准为LR-WPAN网络制定了物理层和MAC子层协议。
IEEE 802.15.4标准定义的LR-WPAN网络具有如下特点: (1) 在不同的载波频率下实现了20kbps、40kbps和250kbps三种不同的传输速率; (2) 支持星型和点对点两种网络拓扑结构; (3) 有16位和64位两种地址格式,其中64位地址是全球惟一的扩展地址; (4) 支持冲突避免的载波多路侦听技术(carrier sense multiple access with collision avoidance, CSMA-CA)。
802.15.4简介
802.15.4包括用于低速无线个人域网(LR-WPAN)的物理层和媒体接入控制层两个规范。它能支持消耗功率最少,一般在个人活动空间(10m直径或更小)工作的简单器件。802.15.4支持两种网络拓扑,即单跳星状或当通信线路超过10m时的多跳对等拓扑。但是对等拓扑的逻辑结构由网络层定义。LR-WPAN中的器件既可以使用64位IEEE地址,也可以使用在关联过程中指配的16位短地址。一个802.15.4网可以容纳最多216个器件。下面分别介绍802.15.4的主要特点。
1、工作频段和数据速率
802.15.4工作在工业科学医疗(ISM)频段,它定义了两个物理层,即2.4GHz频段和868/915MHz频段物理层。免许可证的2.4GHz ISM频段全世界都有,而868MHz和915MHz的ISM频段分别只在欧洲和北美有。在802.15.4中,总共分配了27个具有三种速率的信道:在2.4GHz频段有16个速率为250kbit/s(或62.5ksymbol/s)的信道,在915MHz频段有10个40 bit/s(或40 ksymbol/s)的信道,在868MHz频段有1个20 kbit/s(或20 ksymbol/s)的信道。ISM频段全球都有的特点不仅免除了802.15.4器件的频率许可要求,而且还给许多公司提供了开发可以工作在世界任何地方的标准化产品的难得机会。这将减少投资者的风险,与专门解决方案相比可以明显降低产品成本。在保持简单性的同时,802.15.4还试图提供设计上的灵活性。一个802.15.4网可以根据可用性、拥挤状况和数据速率在27个信道中选择一个工作信道。从能量和成本效率来看,不同的数据速率能为不同的应用提供较好的选择。例如,对于有些计算机外围设备与互动式玩具,可能需要250 kbit/s,而对于其他许多应用,如各种传感器、智能标记和家用电器等,20 kbit/s这样的低速率就能满足要求。
2、支持简单器件
802.15.4低速率、低功耗和短距离传输的特点使它非常适宜支持简单器件。在802.15.4中定义了14个物理层基本参数和35个媒体接入控制层基本参数,总共为49个,仅为蓝牙的三分之一。这使它非常适用于存储能力和计算能力有限的简单器件。在802.15.4中定义了两种器件:全功能器件(FFD)和简化功能器件(RFD)。对全功能器件,要求它支持所有的49个基本参数。而对简化功能器件,在最小配置时只要求它支持38个基本参数。一个全功能器件可以与简化功能器件和其他全功能器件通话,可以按三种方式工作,即用作个人域网协调器、协调器或器件。而简化功能器件只能与全功能器件通话,仅用于非常简单的应用。
3、信标方式和超帧结构
802.15.4网可以工作于信标使能方式或非信标使能方式。在信标使能方式中,协调器定期广播信标,以达到相关器件同步及其他目的。在非信标使能方式中,协调器不定期地广播信标,而是在器件请求信标时向它单播信标。在信标使能方式中使用超帧结构,超帧结构的格式由协调器来定义,一般包括工作部分和任选的不工作部分。
4、数据传输和低功耗
在802.15.4中,有三种不同的数据转移:从器件到协调器;从协调器到器件;在对等网络中从一方到另一方。为了突出低功耗的特点,把数据传输分为以下三种方式:
1)、直接数据传输:这适用于以上所有三种数据转移。采用无槽载波检测多址与碰撞避免(CSMA-CA)或开槽CSMA-CA的数据传输方法,视使用非信标使能方式还是信标使能方式而定。
2)、间接数据传输:这仅适用于从协调器到器件的数据转移。在这种方式中,数据帧由协调器保存在事务处理列表中,等待相应的器件来提取。通过检查来自协调器的信标帧,器件就能发现在事务处理列表中是否挂有一个属于它的数据分组。有时,在非信标使能方式中也可能发生间接数据传输。在数据提取过程中也使用无槽CSMA-CA或开槽CSMA-CA。
3)、有保证时隙(GTS)数据传输:这仅适用于器件与其协调器之间的数据转移,既可以从器件到协调器,也可以从协调器到器件。在GTS数据传输中不需要CSMA-CA。
低功耗是802.15.4最重要的特点。因为对电池供电的简单器件而言,更换电池的花费往往比器件本身的成本还要高。在有些应用中,更换电池不仅麻烦,而且实际上是不可行的,例如嵌在汽车轮胎中的气压传感器或高密度布设的大规模传感器网。所以在802.15.4的数据传输过程中引入了几种延长器件电池寿命或节省功率的机制。多数机制是基于信标使能的方式,主要是限制器件或协调器之收发信机的开通时间,或者在无数据传输时使它们处于休眠状态。其特点是功耗比802.15.4还低,允许器件不用电池。有人预测,UWB网状网最终将由“智能尘粒”组成,是一种精微无线电,它通过纳米技术风车或光电池产生能量。UWB网状网的应用潜力很大,美国军方已经在测试UWB在遥测方面的应用,现在主要问题是成本,目前低速低功率的UWB芯片组的价格至少为20美元,而ZigBee的价格目标仅为几美分。ZigBee联盟相信,ZigBee芯片将像微处理器一样无处不在,其应用将远不止遥测遥控。
IEEE 802.15.4网络拓扑结构及形成过程
要可以组织成星型网络,也可以组织成点对点网络。在星型结构中,所有设备都与中心设备PAN网络协调器通信。在这种网络中,网络协调器一般使用持续电力系统供电,而其他设备采用电池供电。星型网络适合家庭自动化、个人计算机的外设以及个人健康护理等小范围的室内应用。
与星型网不同,点对点网络只要彼此都在对方的无线辐射范围之内,任何两个设备之都可以直接通信。点对点网络中也需要网络协调器,负责实现管理链路状态信息,认证设备身份等功能。点对点网络模式可以支持ad hoc网络允许通过多跳路由的方式在网络中传输数据。不过一般认为自组织问题由网络层来解决,不在IEEE 802.15.4标准讨论范围之内。点对点网络可以构造更复杂的网络结构,适合于设备分布范围广的应用,比如在工业检测与控制、货物库存跟踪和智能农业等方面有非常好的应用背景。
网络拓扑的形成过程
虽然网络拓扑结构的形成过程属于网络层的功能,但IEEE 802.15.4为形成各种网络拓扑结构提供了充分支持。这部分主要讨论IEEE 802.15.4对形成网络拓扑结构提供的支持,并详细地描述了星型网络和点对点网络的形成过程。
1、 星型网络
星型网络以网络协调器(PAN网络协调器,主控制器)为中心,所有设备只能与网络协调器(PAN网络协调器,主控制器)进行通信,因此在星型网络的形成过程中,第一步就是建立网络协调器(PAN网络协调器,主控制器)。任何一个FFD设备都有成为网络协调器的可能,一个网络如何确定自己的网络协调器由上层协议决定。一种简单的策略是:一个FFD设备在第一次被激活后,首先广播查询网络协调器的请求,如果接收到回应说明网络中已经存在网络协调器,再通过一系列认证过程,设备就成为了这个网络中的普通设备。如果没有收到回应,或者认证过程不成功,这个FFD设备就可以建立自己的网络,并且成为这个网络的网络协调器。当然,这里还存在一些更深入的问题,一个是网络协调器过期问题,如原有的网络协调器损坏或者能量耗尽;另一个是偶然因素造成多个网络协调器竞争问题,如移动物体阻挡导致一个FFD自己建立网络,当移动物体离开的时候,网络中将出现多个协调器。
网络协调器要为网络选择一个惟一的标识符,所有该星型网络中的设备都是用这个标识符来规定自己的属主关系。不同星型网络之间的设备通过设置专门的网关完成相互通信。选择一个标识符后,网络协调器就允许其他设备加入自己的网络,并为这些设备转发数据分组。
星型网络中的两个设备如果需要互相通信,都是先把各自的数据包发送给网络协调器,然后由网络协调器转发给对方。
2、点对点网络
在点对点网络中,任意两个设备只要能够彼此收到对方的无线信号,就可以进行直接通信,不需要其他设备的转发。但点对点网络中仍然需要一个网络协调器,不过该协调器的功能不再是为其他设备转发数据,而是完成设备注册和访问控制等基本的网络管理功能。网络协调器的产生同样由上层协议规定,比如把某个信道上第一个开始通信的设备作为该信道上的网络协议器。簇树网络是点对点网络的一个例子,下面以簇树网络为例描述点到点网络的形成过程。
在簇树网络中,绝大多数设备是FFD设备,而RFD设备是作为簇树的叶设备连接到网络中。任意一个FFD都可以充当RFD协调器或者网络协调器,为其他设备提供同步信息。在这些协调器中,只有一个可以充当整个点对点网络的网络协调器。网络协调器可能和网络中其他设备一样,也可能拥有比其他设备更多的计算资源和能量资源。网络协调器首先将自己设为簇头(cluster header ,CLH),并将簇标识符(cluster identifier, CID)设置为0,同时为该簇选择一个未被使用的PAN网络标识符,形成网络中的第一个簇。接着,网络协调器开始广播信标帧。邻近设备收到信标帧后,就可以申请加入该簇。设备可否成为簇成员,由网络协调器决定。如果请求被允许,则该设备将作为簇的子设备加入网络协调器的邻居列表。新加入的设备会将簇头作为它的父设备加入到自己的邻居列表中。
上面讨论的只是一个由单簇构成的最简单的簇树。PAN网络协调器可以指定另一个设备成为邻接的新簇头,以此形成更多的簇。新簇头同样可以选择其他设备成为簇头,进一步扩大网络的覆盖范围。但是过多的簇头会增加簇间消息传递的延迟和通信开销。为了减少延迟和通信开销,簇头可以选择最远的通信设备作为相邻簇的簇头,这样可以最大限度地缩小不同簇间消息传递的跳数,达到减少延迟和开销的目的。
无线个人网
无线个人网(Wireless personal area network)提供了一种小范围内无线通信的手段。 IEEE802协议系列中定义了一系列无线网络标准,目前已成型的无线个人网标准主要有两个: 1)、无线个人网络(WPAN,IEEE802.15.1),覆盖了蓝牙(BlueTooth)协议栈的物理层/媒体接入控制层(MAC/PHY)层。 2)、低速无线个人网络(LR-WPAN,IEEE802.15.4),覆盖了ZigBee协议栈的物理层/媒体接入控制层(MAC/PHY)层。
“无线个人网”与“无线局域网”(WLAN)的区别: 应用领域: 1)无线局域网一般用来替代有线的局域网技术。 2)蓝牙用来替代智能设备,如电脑,手机,PDA,数码相机/摄像机等的外接电缆。 3)2ZigBee则应用于低速低功耗的无线网络,如传感器网络,无线读表网络,智能玩具,智能家庭,智能农业等。
无线的覆盖范围: 1)无线局域网(WLAN)覆盖半径设计值为100米; 2)蓝牙覆盖半径为10米; 3)ZigBee覆盖半径为50米。
设备功耗: 无线局域网设备(WLAN)一般为插电设备; 无线个人网设备(蓝牙和ZigBee设备)则一般为电池设备。 ZigBee更致力于极低功耗网络,例如ZigBee设备不换电池能维持约10年的设备。
组网形式:无线接入方式,网络的安装及网络的生存期,等等。
无线个人网络IEEE802.15.1: Wireless Personal Area Network, WPAN.该标准定义一个物理层(PHY)对应于蓝牙的物理层,一个媒体接入层(MAC)包括了蓝牙协议栈相应的部分。 组网形式:可有两种网络形式。 极微网(Piconet)由一个主控设备(Master)和1到7个从属设备(Slave)组成。 一个IEEE802.15.1设备可在一个极微网中充当主控设备,而在另一个或几个极微网中充当从属设备,从而将不同的极微网桥接起来,如此组成一个分散网(Scatternet)。 物理层主要特性为:GFSK调制;2.4GHz的ISM频段;3类发射功率:第一类最高100mW(=20dBm)最低1mW,第二类最高2.5mW最低0.25mW,第三类最高1mW。 媒体接入控制层主要特性为: 基带(Baseband),一个每秒1600跳的跳频信道由连续不断的625微秒的时隙组成。双向通信由时分双工(Time Divison Duplex,TDD)实现。
基带支持两种物理信道:
面向连接的同步信道(Sychronous Connection-Oriented,SCO link)可用于提供双向64kb/s的PCM话音通路:
无连接异步信道(Asychronous Connection-Less,ACL link)用于数据通路(不对称可达723.2kb/s,对称可达433.9kb/s)。
链路管理协议(Link Manager Protocol),负责物理链路的建立和管理。
逻辑链路控制及适配协议(Logical Link Control and Adaptation Protocol),负责对高层协议的复用,数据包分割(Segmentation)和重新组装(Reassembly)。
一个标准化的控制接口(Host Control Interface HCI)
低速无线个人网络IEEE802.15.4:
Low Rate Wireless Personal Area Network, LR-WPAN 组网形式:IEEE802.15.4的网络设备分为两类,完整功能设备(Full Functional Device, FFD)支持所有的网络功能,是网络的核心部分;部分功能设备(Reduced Functional Device, RFD)只支持最少的必要的网络功能,网络中一般大部分是此类设备。一般有两种组网形式,星型网络,以一个完整功能设备为网络中心。 簇型网络,在若干星型网络基础上,中心的完整功能设备再互相连接起来,组成一个树型网络。 物理层主要特性为:868MHz,915MHz,2.4GHz ISM频段上的共27个信道。其中,信道0,868-868.6MHz,中心频率868.3Hz。BPSK调制。提供20kb/s的数据通路。信道1-10, 中心频率=906 + 2x(信道号-1) MHz。BPSK调制。每信道提供40kb/s的数据通路。信道11-26,中心频率=2405 + 5x(信道号-11) MHz。O-QPSK调制。每信道提供250kb/s的数据通路。 媒体接入控制层主要特性为:CSMA/CA接入,以及可选的超级帧(Superframe)分时隙机制。 ZigBee技术概况 Zigbee是一种新兴的短距离、低速率无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。它此前被称作“HomeRF Lite”或“FireFly”无线技术,主要用于近距离无线连接。它有自己的无线电标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。最后,这些数据就可以进入计算机用于分析或者被另外一种无线技术如WiMax收集。 何为Zigbee? Zigbee的基础是IEEE 802.15.4,这是IEEE无线个人区域网(Personal Area Network,PAN)工作组的一项标准,被称作IEEE 802.15.4(Zigbee)技术标准。
Zigbee不仅只是802.15.4的名字。IEEE仅处理低级MAC层和物理层协议,因此Zigbee联盟对其网络层协议和API进行了标准化。完全协议用于一次可直接连接到一个设备的基本节点的4K字节或者作为Hub或路由器的协调器的32K字节。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。Zigbee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其它节点获得。
Zigbee联盟成立于2001年8月。2002年下半年,英国Invensys公司、日本三菱电气公司、美国摩托罗拉公司以及荷兰飞利浦半导体公司四大巨头共同宣布,它们将加盟“Zigbee 联盟”,以研发名为“Zigbee”的下一代无线通信标准,这一事件成为该项技术发展过程中的里程碑。
到目前为止,除了Invensys、 三菱电子、摩托罗拉和飞利浦等国际知名的大公司外,该联盟大约已有150家成员企业,并在迅速发展壮大。其中涵盖了半导体生产商、IP服务提供商、消费类电子厂商及OEM商等,例如Honeywell、Eaton和Invensys Metering Systems等工业控制和家用自动化公司,甚至还有像Mattel之类的玩具公司。所有这些公司都参加了负责开发Zigbee物理和媒体控制层技术标准的IEEE 802.15.4工作组。
Zigbee超越蓝牙,简单实用。
1999年,蓝牙热潮席卷全球,然而发展数年,一直受芯片价格高、厂商支持力度不够、传输距离限制及抗干扰能力差等问题的困扰。低功耗、低成本的无线网络要求令Zigbee应运而生,大幅简化蓝牙的复杂规格,专注于低传输应用。不过相关规格已与现有的蓝牙脱钩。于是有媒体甚至预言:Zigbee和UWB (Ultra-WideBand超宽频道)切入市场可能使蓝牙尚未普及即成历史。这种论调显然言过其实,因为Zigbee不支持语音,但Zigbee的低价格、低功耗和可靠支持成为其闪亮登场的亮点,使得它超越蓝牙的简单实用成为事实
Zigbee技术的主要特点:
1)数据传输速率低: 只有10k字节/秒到250k字节/秒,专注于低传输应用;
2)功耗低: 在待机模式下,两节普通5号干电池可使用6个月到2年,免去了充电或者频繁更换电池的麻烦。这也是Zigbee的支持者所一直引以为豪的独特优势;
3)成本低: 因为Zigbee数据传输速率低,协议简单,所以大大降低了成本。且Zigbee 协议免收专利费。
4)网络容量大: 每个Zigbee网络最多可支持255个设备,也就是说,每个Zigbee设备可以与另外254台设备相连接;
5)时延短:通常时延都在15毫秒至30毫秒之间;
6)安全:Zigbee提供了数据完整性检查和鉴权功能,加密算法采用AES-128,同时可以灵活确定其安全属性;
7)有效范围小: 有效覆盖范围10~75米之间,缺点变成了优点。具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境;
8)工作频段灵活: 使用的频段分别为2.4GHz、868MHz(欧洲)及915MHz(美国),均为免执照频段。 Zigbee协议套件: 完整的Zigbee协议套件由高层应用规范、应用会聚层、网络层、数据链路层和物理层组成。网络层以上协议由Zigbee联盟制定,IEEE负责物理层和链路层标准。
应用会聚层将主要负责把不同的应用映射到Zigbee网络上,具体而言包括: 安全与鉴权; 多个业务数据流的会聚; 设备发现; 业务发现。 网络层将主要考虑采用基于ad hoc技术的网络协议,应包含以下功能: 通用的网络层功能:拓扑结构的搭建和维护,命名和关联业务,包含了寻址、路由和安全; 同IEEE802.15.4标准一样,非常省电; 有自组织、自维护功能,以最大程度减少消费者的开支和维护成本。 IEEE802系列标准把数据链路层分成LLC(Logical Link Control,逻辑链路控制)和MAC(Media Access Control,媒介接入控制)两个子层。LLC子层在IEEE802.6标准中定义,为802标准系列共用;而MAC子层协议则依赖于各自的物理层。
IEEE802.15.4的MAC层能支持多种LLC标准,通过SSCS(Service-Specific Convergence Sublayer,业务相关的会聚子层)协议承载IEEE802.2类型一的LLC标准,同时也允许其他LLC标准直接使用IEEE802.15.4 的MAC层的服务。
LLC子层的主要功能包括:
传输可靠性保障和控制; 数据包的分段与重组; 数据包的顺序传输。
EEE802.15.4的MAC协议包括以下功能:
设备间无线链路的建立、维护和结束; 确认模式的帧传送与接收; 信道接入控制; 帧校验; 预留时隙管理; 广播信息管理。 IEEE802.15.4定义了两个物理层标准,分别是2.4GHz物理层和868/915MHz物理层。两个物理层都基于DSSS(Direct Sequence Spread Spectrum,直接序列扩频),使用相同的物理层数据包格式,区别在于工作频率、调制技术、扩频码片长度和传输速率。2.4GHz波段为全球统一的无需申请的ISM频段,有助于Zigbee设备的推广和生产成本的降低。2.4GHz的物理层通过采用高阶调制技术能够提供250kb/s的传输速率,有助于获得更高的吞吐量、更小的通信时延和更短的工作周期,从而更加省电。868MHz是欧洲的ISM频段,915MHz是美国的ISM频段,这两个频段的引入避免了2.4GHz附近各种无线通信设备的相互干扰。868MHz的传输速率为20kb/s,916MHz是40kb/s。由于这两个频段上无线信号传播损耗较小,因此可以降低对接收机灵敏度的要求,获得较远的有效通信距离,从而可以用较少的设备覆盖给定的区域。 相对于常见的无线通信标准,Zigbee协议套件紧凑而简单,其具体实现的要求很低,以下是Zigbee协议套件的需求估计: 8位处理器,如80c51; 全协议套件软件需要32kbytes的ROM; 最小协议套件软件大约4kbytes的ROM; 网络主节点需要更多的RAM,以容纳网络内所有节点的设备信息、数据包转发表、设备关联表、与安全有关的密钥存储等。
Zigbee 的应用实例:
Zigbee 技术将主要嵌入在消费性电子设备、家庭和建筑物自动化设备、工业控制装置、电脑外设、医用传感器、玩具和游戏机等设备中,支持小范围的基于无线通信的控制和自动化等领域中。 通常,符合如下条件之一的应用,就可以考虑采用 Zigbee 技术做无线传输:
1、设备成本很低,传输的数据量很小;
2、设备体积很小,不便放置较大的充电电池或者电源模块;
3、没有充足的电力支持,只能使用一次性电池;
4. 频繁地更换电池或者反复地充电无法做到或者很困难;
5. 需要较大范围的通信覆盖,网络中的设备非常多,但仅仅用于监测或控制。
Zigbee 联盟预测的主要应用领域包括工业控制、消费性电子设备、汽车自动化、农业自动化和医用设备控制等。
在工业领域,利用传感器和Zigbee 网络,使得数据的自动采集、分析和处理变得更加容易,可以作为决策辅助系统的重要组成部分。例如危险化学成分的检测,火警的早期检测和预报,高速旋转机器的检测和维护。这些应用不需要很高的数据吞吐量和连续的状态更新,重点在低功耗,从而最大程度地延长电池的寿命,减少 Zigbee 网络的维护成本。
在汽车上,主要是传递信息的通用传感器。由于很多传感器只能内置在飞转的车轮或者发动机中,比如轮胎压力监测系统,这就要求内置的无线通信设备使用的电池有较长的寿命(大于或等于轮胎本身的寿命),同时应该克服嘈杂的环境和金属结构对电磁波的屏蔽效应。
在精确农业,或者叫精确耕种的应用中,无线电传播特性良好,但是需要成千上万的传感器构成比较复杂的控制网络。传统农业主要使用孤立的、没有通信能力的机械设备,主要依靠人力监测作物的生长状况。采用了传感器和 Zigbee 网络以后,农业将可以逐渐地转向以信息和软件为中心的生产模式,使用更多的自动化、网络化、智能化和远程控制的设备来耕种。传感器可能收集包括土壤湿度、氮浓度、 pH 值、降水量、温度、空气湿度和气压等信息。这些信息和采集信息的地理位置经由 Zigbee 网络传送到中央控制设备供农民决策和参考,这样农民能够及早而且准确地发现问题,从而有助于保持并提高农作物的产量
医学领域,将借助于各种传感器和 Zigbee 网络,准确而且实时地监测每个病人的血压、体温和心跳速度等信息,从而减少医生查房的工作负担,有助于医生做出快速的反应,特别是对重病和病危患者的监护和治疗。
消费和家用自动化市场是 Zigbee 技术最有潜力的市场。据估测,每个家庭需要 100 到 150 个 Zigbee 设备。可以联网的家用设备包括电视、录像机、 PC 外设、儿童玩具、游戏机、门禁系统、窗户和窗帘、照明设备、空调系统和其他家用电器等。家用设备引入 Zigbee 技术后,将大大改善人们居住环境和舒适度,特别适合于儿童、老年人和残疾人士使用。同时基于 Zigbee 技术的遥控器可以实现全球漫游和无缝使用,从而在一定程度上降低这些设备的生产和使用成本。
根据业务流的特征, Zigbee 的应用可以划分成边疆性业务、周期性业务和间断性业各三种。连续性业务定义为要求低时延数据传输的业务,键盘、鼠标和游戏杆属于这种类型。周期性业务是在固定的时间间隔传输数据的低速率业务,传感器、流速计和警报系统是周期性业务的代表。而间歇性业务则以不规则的时间间隔传输数据,室内照明设施的开关和家用电器遥控器属于这种类型。
Zigbee 技术弥补了低成本、低功耗和低速率无线通信市场的空缺,其成功的关键在于丰富而便捷的应用,而不是技术本身。
随着正式版本协议的即将公布,更多的注意力和研发力量将转到应用的设计和实现、互联互通测试和市场推广等方面。我们有理由相信在不远的将来,将有越来越多的内置式 Zigbee 功能的设备进入我们的生活,并将极大地改善我们的生活方式和体验。
Zigbee 技术
新兴的无线个人局域网络技术正逐渐朝商品化的阶段迈进,在IEEE 802.15的标准中,除了纳入蓝芽(IEEE 802.15.1)之外,同时也发展高速传输的UltraWideBand(IEEE 802.15.3a)与低耗电的ZigBee(IEEE 802.15.4),究竟这两种新的WPAN技术有何特色?其对无线个人局域网络市场的影响为何?本文将为您作进一步的分析。
便宜又省电的低速WPAN标准–Zigbee
Zigbee强调低成本、低耗电、双向传输、感应网络功能等特色,只不过Zigbee是朝着开放标准的方向发展。Zigbee一开始是由Honywell所发起,目前主要的成员包括Invensys、Mistubishi Electric、Motorola、Philips Semiconductor、Samsung等公司为推广厂商,以及数十家的IC设计制造与系统厂商。除此之外,IEEE也将Zigbee收纳为IEEE 802.15.4的标准,与Zigbee Alliance共同为此一WPAN标准催生。
规格与标准制定
ZigBee的接取方式是采直序展频(Direct Sequence Spread Spectrum)技术,可使用的频段有三个,分别是2.4GHz的ISM频段、欧洲的868MHz频段,以及美国的915MHz频段,而不同频段可使用的信道分别是16、10、1个。 ZigBee的传输速率介于20kbps–250kbps之间,并随着传输距离的延长而减慢,例如: 发射功率在1mW的ZigBee产品,在10公尺的距离内可达250kbps的传输速率; 发射功率在1mW的ZigBee产品,将传输距离拉长至20公尺,则速度只剩30kbps。 不考虑耗电,通过提高发射功率,在100公尺的传输距离内,可以达到每秒250kbps的传输速率。 此外,由于ZigBee具备高链接数与低耗电的特性,在感应式网络(Sensor Network)上的使用,就具有相当大的优势,例如在工厂内的作业温度量测、水电瓦斯计度的记录、保全防护的监控上,厂商就不需经常更换电池或布建供电网络,且只需极少的人力与设备,即可取得所需的信息。
ZigBee Alliance基本规格:
频段:全球的2.4GHz ISM频段、欧洲的868MHz频段,以及美国的915MHz频段。 链接数:支持主从式或点对点方式运作,同时最多可255个装置链接(Master×1,client nodes×254)。 接取方式:直列展频技术DSSS。 网络架构:星形。 传输速率:20kbps~250kbps。 传输距离:10公尺(依耗电量之不同,可提升至100公尺)。 可使用频道数:在2.4GHz的ISM频段,可使用的信道数为16个;在915MHz的ISM频段,可使用的信道数为10个;在欧洲的868MHz频段,可使用的信道数为1个。 而在标准制定的分工上,则由ZigBee Alliance与IEEE 802.15.4的任务小组来共同担任标准的制定。其中实体层、MAC层、数据链结层,以及传输过程中的资料加密机制等发展由IEEE所主导,并共同针对ZigBee Protocol Stack的发展进行研议,而未来还能依系统客户的需求,来修正其所需的应用接口。
Zigbee的应用与市场发展
Zigbee的出发点是希望能发展一种易布建的低成本无线网络,而其低耗电性可使产品的电池能维持6个月到数年的时间。在产品发展的初期,将以工业或企业市场的感应式网络为主,提供感应辨识、灯光与安全控制等功能,再逐渐将目前市场扩展至家庭中的应用。根据Zigbee Alliance的观点,一般家庭可将Zigbee应用于空调系统的温度控制器、灯光、窗帘的自动控制、老年人与行动不便者的紧急呼叫器、电视与音响的万用遥控器、无线键盘、鼠标、摇杆、烟雾侦测器、智能型卷标,以及玩具等产品。
目前在ZigBee标准制定发展上,IEEE已于2004年通过有关实体层与媒体储存控制层的标准草案,因此早在2003年底,即有芯片设计厂商发表适用于868MHz频段的ZigBee芯片,预估在2004年底,可达到商品化的目标。而投入ZigBee技术研发的厂商,对于市场的发展都抱持相当乐观的看法。根据Adcon Telemetry AG观点,预估全球低速通讯应用市场,将在2005年达到5.7亿台的规模,届时不论ZigBee能取得多大的市场占有率,这都代表其可发展的空间的确具有相当大的潜力。
ZigBee与802.15.4的区别:
ZigBee建立在802.15.4标准之上,它确定了可以在不同制造商之间共享的应用纲要。IEEE 802.15.4是IEEE(Institute of Electrical and Electronics Engineer, 电子电机学会)确定的低速率,无线个域网(personal area network)标准。这个标准定义了“实体层”(physical layer)和“介质访问层”(medium access layer)。 实体层(PHY)规范确定了在2.4G赫兹以250kbps的基准传输率工作的低功耗展频无线电。(另有一些以更低数据传播率工作的915兆赫兹和868兆赫兹的实体层规范, 但它们不太流行)。
介质访问层(MAC)规范定义了在同一区域工作的多个802.15.4无线电信号如何共享空中通道。介质存取层支持几种架构,包括星状拓扑结构(一个节点作为网络协调点,类似于802.11的接入点),树状拓扑结构(一些节点依次经过另一些节点才到达网络协调点),和网状拓扑结构(无须主协调点,各个节点之间分享路由职责)。
但是仅仅定义实体层和介质访问层并不足以保证不同的设备之间可以对话。于是便有了ZigBee联盟。ZigBee从802.15.4标准开始着手,目前正在定义允许不同厂商制造的设备相互对话的应用纲要。 例如,ZigBee“灯纲要”会确定相关的所有协议,因此你从A公司买的ZigBee灯开关会和B公司的灯正常工作。
ZigBee使用直接序列扩频技术收发电波。利用2.4GHz频段、868MHz频段、915MHz频段。一次调制方式使用O-QPSK时,最大数据传输速度为250kbps。网络拓扑采用网状、星型、丛集树状(cluster-tree)。规定了两种设备级别,一种是支持所有拓扑的“Full Function Device”,一种是只支持部分拓扑的“Reduced Function Device”。
ZigBee组网:
单网络由一个接收协调器模块和多个终端模块组成。同一个场地会存在多个功能相同的单网络。
发送数据:
模块将采集到的数据发送给协调器模块,在收到协调器模块的确认帧后才会停止发送。这样做的好处,可以实现同频共存,抑制同频干扰。发送的数据帧和确认帧的格式可自定义。
转发数据:
协调器模块收到终端模块传来的时候后,通过串口发送到上位机。帧格式自定义,需注明数据来自哪个终端模块。
硬件设有外部触发按键,按下时,MCU得电。此时MCU完成必的初始化设置后,需立即拉高P1_0,自锁电源供电。模块依次完成组网、采集数据、发送数据,在收到协调器的确认消息后,拉低P1_0,切断电源,进入睡眠。
当场景中有新的终端模块时,需要做到能让新终端加入临时指定的网络。
当网络中的设备在重新上电后,能够恢复掉电前的网络结构进行组网。
同一个网络内,协调器模块要能接收到当前所有终端模块的数据,终端模块在同时发送数据时,要求不能丢失数据。
同一个网络内,协调器和终端最远距离为10米。
同一应用场景内,可能存在多个协调器和终端。