参数


https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

最大池化
import torch
from torch import nn
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]], dtype=torch.float32)
input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.maxpool1 = nn.MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool1(input)
return output
tudui = Tudui()
output = tudui(input)
print(output)

用图片验证
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.maxpool1 = nn.MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool1(input)
return output
tudui = Tudui()
step = 0
writer = SummaryWriter('./logs_maxpool')
for data in dataloader:
imgs, targets = data
writer.add_images('input', imgs, step)
output = tudui(imgs)
writer.add_images('output', output, step)
step += 1
writer.close()
最大池化结果

池化目的:减少数据量,加快训练速度(看yolo说还是卷积效果好,最后只有卷积层了)