DS图—最小生成树

题目描述

根据输入创建无向网。
分别用Prim算法和Kruskal算法构建最小生成树。 (假设:输入数据的最小生成树唯一。)

输入

顶点数n
n个顶点
边数m
m条边信息,格式为:顶点1 顶点2 权值
Prim算法的起点v

输出

输出最小生成树的权值之和
对两种算法,按树的生长顺序,输出边信息(Kruskal中边顶点按数组序号升序输出)

样例输入

6
v1 v2 v3 v4 v5 v6
10
v1 v2 6
v1 v3 1
v1 v4 5
v2 v3 5
v2 v5 3
v3 v4 5
v3 v5 6
v3 v6 4
v4 v6 2
v5 v6 6
v1

样例输出

15
prim:
v1 v3 1
v3 v6 4
v6 v4 2
v3 v2 5
v2 v5 3
kruskal:
v1 v3 1
v4 v6 2
v2 v5 3
v3 v6 4
v2 v3 5

#include 
using namespace std;
#define MAX_WEIGHT 99999

struct
{
    string adjvex;
    int weight;
} Close_Edge[100]; //该点周围权值最小的边

class MGraph
{
public:
    int Graph_Prim[100][100], Graph_Kruskal[100][100]; //图的权值矩阵
    int n, nedge;                                      //n是节点个数,len是边个数
    int visited[100];                                  //Prim中标记已连接的点
    string *node;                                      //存放节点名
    string start;                                      //Prim开始节点
    int startpos;                                      //Prim开始位置
    MGraph() {}
    void SetMGraph();
    void Prim();
    void Kruskal();
};

void MGraph::SetMGraph() //数值输入及初始化
{
    int i, j;
    cin >> n;
    for (i = 0; i < n; i++)
    {
        for (j = 0; j < n; j++)
        {
            Graph_Prim[i][j] = 10000;
            Graph_Kruskal[i][j] = 10000;
        }
    }

    node = new string[n];
    for (i = 0; i < n; i++)
        cin >> node[i];

    cin >> nedge;
    for (i = 1; i <= nedge; i++)
    {
        string ch1, ch2;
        int weight_;
        cin >> ch1 >> ch2 >> weight_;
        int loc1, loc2;
        for (j = 0; j < n; j++)
        {
            if (node[j] == ch1)
                loc1 = j;
            if (node[j] == ch2)
                loc2 = j;
        }
        //构建权值矩阵
        Graph_Kruskal[loc1][loc2] = Graph_Prim[loc1][loc2] = weight_;
        Graph_Kruskal[loc1][loc2] = Graph_Prim[loc2][loc1] = weight_;
    }
    cin >> start;
    for (i = 0; i < n; i++) //确定Prim开始位置
        if (node[i] == start)
            startpos = i;
}

void MGraph::Prim()
{
    int i, j;
    for (i = 1; i <= n; i++)
        visited[i] = 0;
    visited[startpos] = 1;
    int min_;

    //找出每个点周围权值最小的边及其邻接的点
    for (i = 0; i < n; i++)
    {
        min_ = MAX_WEIGHT;
        for (j = 0; j < n; j++)
        {
            if (Graph_Prim[i][j] < min_)
            {
                min_ = Graph_Prim[i][j];
                Close_Edge[i].adjvex = node[j];
                Close_Edge[i].weight = min_;
            }
        }
    }

    string s3;
    string *e1, *e2;
    int *w3;
    e1 = new string[100];
    e2 = new string[100];
    w3 = new int[100];

    int index, k = 0;
    for (i = 0; i < n; i++) //这里可能要修改为从起始点start开始
    {
        min_ = MAX_WEIGHT;
        for (j = 0; j < n; j++)
        {
            if (!visited[j])
                continue;
            else
            {
                if (min_ > Close_Edge[j].weight)
                {
                    min_ = Close_Edge[j].weight;
                    s3 = Close_Edge[j].adjvex;
                    index = j;
                }
            }
        }
        e1[k] = node[index];
        e2[k] = s3;
        w3[k++] = min_;

        for (int g = 0; g < n; g++) //标记已连接的点
        {
            if (node[g] == s3)
            {
                visited[g] = 1;
                break;
            }
        }
        for (int g = 0; g < n; g++) //更新Close_Edge
        {
            min_ = MAX_WEIGHT;
            for (int m = 0; m < n; m++)
            {
                if (min_ > Graph_Prim[g][m] && visited[m] == 0)
                {
                    min_ = Graph_Prim[g][m];
                    Close_Edge[g].adjvex = node[m];
                    Close_Edge[g].weight = min_;
                }
            }
        }
    }
    int Weight = 0;
    for (i = 0; i < k - 1; i++)
    {
        Weight += w3[i];
    }
    cout << Weight << endl;
    cout << "prim:" << endl;
    for (i = 0; i < k - 1; i++)
        cout << e1[i] << " " << e2[i] << " " << w3[i] << endl;
}

void MGraph::Kruskal()
{
    cout << "kruskal:" << endl;
    int *uni = new int[n];

    //标记哪些点相连,uni值相同表示这些点在一个连通分量内
    for (int i = 0; i < n; i++)
        uni[i] = i;

    for (int i = 0; i < n - 1; i++)
    {
        int min = MAX_WEIGHT;
        int x, y;
        for (int j = 0; j < n; j++) //找出权值最小的边
        {
            for (int k = 0; k < n; k++)
            {
                if (j == k)
                    continue;
                if (uni[j] == uni[k])
                    continue;
                else
                {
                    if (min > Graph_Kruskal[j][k])
                    {
                        min = Graph_Kruskal[j][k];
                        x = j;
                        y = k;
                    }
                }
            }
        }
        Graph_Kruskal[x][y] = MAX_WEIGHT;
        Graph_Kruskal[y][x] = MAX_WEIGHT;

        if (x > y) //确保最后升序输出,x要小于y
            swap(x, y);

        for (int i = 0; i < n; i++)
        {
            if (uni[i] == uni[y] && i != y) //如果点y已经在包含多个点的连通分量内
                uni[i] = uni[x];
        }
        uni[y] = uni[x];
        cout << node[x] << " " << node[y] << " " << min << endl;
    }
}

int main()
{
    MGraph m, M;
    m.SetMGraph();
    m.Prim();
    m.Kruskal();
    return 0;
}

你可能感兴趣的:(Data,Structure,数据结构)