- 技术日报开源项目
项目介绍:项目分为资讯和图片和关于三大类,资讯分为github、hacker、SegmentFault、jobBole、技术头条、Android、ios、和all,图片是美女福利图片、并提供下载。项目已在应用宝上线:地址http://android.myapp.com/myapp/detail.htm?apkName=com.infomation.haiffeng项目用到的技术框架1:采用okht
- AlphaGPT通过国家AIGC生成式算法备案,为法律专业人士提供更加合规可靠的ai技术支持
资讯分享周
AIGC人工智能
在当前互联网信息时代,大模型算法已成各行业不可或缺的核心,不仅改善生活和工作,也在创新中展现巨大潜力。然而,随着算法应用的普及,如何合规管理算法,保护用户权益和隐私,确保公正运行,成为重要议题。日前,国内领先的法律科技企业iCourt宣布,其自主研发的法律垂类领域大模型AlphaGPT成功通过国家生成式模型深度学习合成算法备案。本次备案的通过,彰显了iCourt在法律AI领域有迈向了一个新的里程碑
- 满血DeepSeek加持的AlphaGPT,助力高文律师事务所全面拥抱AI
2025年初,中国团队精心雕琢的通用大模型DeepSeek凭借其创新的架构优化以及深入的数据挖掘技术,在逻辑推理、多轮对话和知识搜索等关键领域大放异彩,其为诸多垂直领域,特别是法律行业的智能化转型,开拓了全新的方向。2月8日,法律科技领域的领军者iCourt将旗下的AlphaGPT与DeepSeek深度融合,重磅推出业内首款“DeepSeek+法律专业”AI大模型。这一创举彻底打破了传统法律智能工
- C++11标准库算法:深入理解std::none_of
码事漫谈
c++11c++算法java
文章目录函数原型与核心语义模板参数约束实现原理与标准库设计思想与all_of/any_of的逻辑关系应用场景1.输入验证2.状态检查3.与函数对象结合4.替代传统循环性能特性与注意事项复杂度保证迭代器选择建议谓词设计要点C++标准演进与扩展总结C++11标准为STL带来了诸多革命性改进,其中算法库的扩展尤为引人注目。std::none_of作为新增的三大逻辑判断算法之一(与std::all_of、
- AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
AI生存日记
人工智能microsoftOpenAI大模型机器学习
2025年7月伊始,AI领域技术突破与产业布局齐头并进:微软推出的AI诊断工具展现出超越医生的诊断能力,上海发布重点应用场景推动技术落地,亚马逊、OpenAI等企业则在人才与算力布局上动作频频,勾勒出AI技术商业化的多元路径。微软AI诊断工具登场,医疗场景再添利器6月30日,微软在官方博客宣布推出AI诊断工具MicrosoftAIDiagnosticOrchestrator(MAI-DxO)。该工
- 【AIGC时代】OneCode前端框架入门指南:从环境搭建到第一个应用
低代码老李
OneCode实战低代码软件行业学习前端框架
在人工智能生成内容(AIGC)技术飞速发展的今天,前端开发领域正经历着前所未有的变革。AI工具能够批量生成代码,但如何将这些自动生成的代码转化为可维护、高质量的生产级应用,成为开发者面临的核心挑战。OneCode框架凭借其独特的设计理念,在这一背景下展现出显著优势,本文将带您从零开始,快速掌握OneCode框架的使用方法。一、AIGC背景下选择OneCode框架的四大理由AIGC工具的普及为前端开
- 【SpringBoot】Spring Boot热部署方案的 终极深度解析,覆盖IDEA配置、JRebel原理级实操、DevTools内核机制及生产级调优策略,共分6大模块
夜雨hiyeyu.com
springbootintellij-idea后端mavenjavaideaspring
SpringBoot热部署方案的终极深度解析,覆盖IDEA配置、JRebel原理级实操、DevTools内核机制及生产级调优策略一、热部署核心原理与架构1.JVM类加载机制限制2.字节码热替换技术对比二、JRebel企业级部署全流程1.深层配置指南2.多模块项目热加载3.热替换失败解决方案三、DevTools内核级调优1.类加载隔离机制2.资源热更新策略3.生产级问题诊断四、高效协同工作流1.ID
- 三维扫描赋能文化:蔡司3D扫描仪让木质文化遗产焕发新生-沪敖3D
HuAo_3D
沪敖3D3d扫描仪蔡司三维扫描仪蔡司三维扫描技术应用
挪威文化历史博物馆在其修复工作中融入现代3D扫描技术,让数百年的历史焕发新生。文化历史博物馆的工作文化历史博物馆是奥斯陆大学的一个院系。凭借其在文化历史管理、研究和传播方面的丰富专业知识,该博物馆被誉为挪威博物馆研究领域的领先机构。馆内展出了涵盖从石器时代、维京时代、中世纪直至近代的最大规模的考古学和民族学藏品。该院系的维京船屋博物馆于1926年开放,至今仍每年吸引着众多历史爱好者前来参观。复杂的
- 物联网全景解析:核心技术、多元应用与未来趋势
物联网(IoT)作为新一代信息技术的核心载体,正通过“万物互联”重塑人类生产生活方式。以下从核心技术、应用场景、未来趋势三个维度展开全景解析。一、核心技术:构建物联网的四大支柱传感器技术:数据采集的“神经末梢”功能:将物理世界(温度、湿度、压力等)和生物世界(心率、血压)的信号转化为数字信号,是物联网感知层的基础。创新方向:微型化:MEMS传感器体积缩小至毫米级,可嵌入可穿戴设备;智能化:集成滤波
- 数字平台的未来:区块链与域名创新的融合图景
boyedu
终端域名区块链区块链域名
在数字经济浪潮中,区块链技术与域名系统的创新结合正在重塑数字平台的底层逻辑。从去中心化身份认证到抗审查的域名解析,从数字资产确权到跨平台数据互通,这一融合不仅解决了传统互联网的核心痛点,更开辟了价值互联的新纪元。一、传统域名体系的困境与区块链的破局之道传统域名系统(DNS)的集中化架构暴露出三大结构性矛盾:信任依赖风险:ICANN主导的层级管理导致单点故障隐患,2021年Fastly缓存服务器宕机
- 六大技术支柱推动元宇宙发展:从区块链到物联网
元宇宙作为数字世界与现实世界深度融合的产物,其发展依赖于六大技术支柱的协同创新,这一技术集合被形象地称为“BIGANT”(大蚂蚁)。以下是对六大技术支柱的详细解析,重点阐述区块链与物联网的核心作用:一、区块链技术(Blockchain):构建元宇宙的信任基石去中心化经济体系区块链通过NFT(非同质化通证)、DAO(去中心化自治组织)、智能合约等技术,为元宇宙提供了去中心化的价值流转机制。例如:NF
- STM32F103五分钟入门系列(八)SysTick滴答定时器+SysTick中断实现跑马灯
独独白
STM32F107嵌入式stm32单片机arm
学习板:STM32F103ZET6往期博客:STM32F103五分钟入门系列(一)跑马灯(库函数+寄存器)+加编程模板+GPIO总结STM32F103五分钟入门系列(二)GPIO的七大寄存器+GPIOx_LCKR作用和配置STM32F103五分钟入门系列(三)GPIO的常用库函数使用方法总结+一个网络上的误区STM32F103五分钟入门系列(四)蜂鸣器实验(库函数+寄存器)STM32F103五分钟
- 如何道破信息差,精准准备秋招?——应届生秋招全流程解析
信息差,是大多数应届生秋招失败的关键。本文将从认知差距、平台渠道、实战建议三大维度,帮你打破信息壁垒,走上offer收割之路。一、什么是秋招中的“信息差”?在秋招中,应届生之间的差距并非仅仅是技术实力,更在于“知道什么”和“知道怎么做”的能力差异。常见的信息差类型:信息差类型表现形式企业信息差不知道哪些公司在招人,不清楚岗位要求面试流程差不知道面试题类型、不清楚流程节点技术准备差不知道八股文、项目
- 筑牢 AIGC 安全防线:警惕提示词注入攻击
CS创新实验室
AIGCAIGC安全大模型提示词提示词注入
在AIGC(生成式人工智能)技术蓬勃发展的当下,其在各个领域的应用日益广泛。然而,随着AIGC技术的深入应用,安全问题也逐渐凸显,提示词注入攻击便是其中不容忽视的一大威胁。对于AIGC开发者而言,深入了解提示词注入攻击并做好防范工作,是保障AIGC系统安全稳定运行的关键。提示词注入攻击的基本知识提示词注入攻击是指攻击者通过精心设计和构造提示词,利用AIGC模型对输入文本的处理机制,干扰模型的正常运
- 大语言模型与增强现实:空间计算时代的AI原生应用
Agentic AI人工智能与大数据
CS语言模型ar空间计算ai
大语言模型与增强现实:空间计算时代的AI原生应用关键词:大语言模型(LLM)、增强现实(AR)、空间计算、AI原生应用、多模态交互、具身智能、虚实融合摘要:当“能对话的AI大脑”(大语言模型)遇到“能叠加虚拟世界的魔法眼镜”(增强现实),一场空间计算时代的革命正在发生。本文将带你一步步拆解大语言模型与AR的“强强联合”:从基础概念到技术原理,从真实案例到未来趋势,用“给小学生讲故事”的方式,讲清这
- Claude 最新功能解读:2024 年 AI 技术的前沿发展
AI原生应用开发
人工智能ai
Claude最新功能解读:2024年AI技术的前沿发展关键词:Claude3.5Sonnet、多模态增强、长上下文理解、工具调用进化、个性化AI、伦理安全机制、2024AI前沿摘要:2024年,Anthropic推出的Claude3.5Sonnet成为AI领域的“现象级更新”——它不仅能同时处理文字、图片、音频等多种信息(多模态),还能记住长达100万字的上下文(相当于一本《哈利波特》),甚至能像
- AI人工智能浪潮中,GPT的技术优势凸显
AI学长带你学AI
人工智能gptai
AI人工智能浪潮中,GPT的技术优势凸显关键词:人工智能、GPT、自然语言处理、深度学习、Transformer、大语言模型、技术优势摘要:本文深入探讨了在人工智能浪潮中GPT(GenerativePre-trainedTransformer)系列模型的技术优势。我们将从GPT的核心架构出发,分析其独特的技术特点,包括自注意力机制、预训练-微调范式、零样本学习能力等。通过与传统NLP方法的对比,揭
- Kimi 大模型支持 Tool Calling 功能,并入驻字节「扣子Coze」开发平台!
铃灵狗
新闻人工智能
Kimi大模型API支持ToolCalling功能Kimi大模型学会「使用工具」了,API已支持ToolCalling功能。开发者们在打造自己的AIAgents时,可以让Kimi大模型与丰富的自定义外部工具进行交互,打开AI应用更大的想象空间。例如,在对话中,当用户问到一家公司的地址时,Kimi大模型可以调用地图工具,直观地展示这家公司在地图上的具体位置和交通路线;如果用户想要把文稿做成演示文稿,
- Spring AI深度解析(7/50):Tool Calling 工具调用解析
Spring AI学习
spring人工智能microsoft
SpringAI深度解析(7/50):ToolCalling工具调用解析一、工具调用的本质突破传统大模型存在两大核心限制:知识时效性与动作执行能力。SpringAI通过工具调用(ToolCalling)机制,将大模型从「信息处理中心」升级为「智能调度中枢」,实现三大飞跃:实时数据获取:连接数据库、API等动态数据源物理世界交互:触发硬件设备、业务流程复杂逻辑编排:多工具链式调用与结果聚合二、Spr
- 大语言模型的具身化——LLM-based Agents实战
apollowin123
人工智能语言模型深度学习
1.概述1.1Agent是什么长期以来,研究者们一直在追求与人类相当、乃至超越人类水平的通用人工智能(ArtificialGeneralIntelligence,AGI)。早在1950年代,AlanTuring就将「智能」的概念扩展到了人工实体,并提出了著名的图灵测试。这些人工智能实体通常被称为——代理(Agent)。「代理」这一概念起源于哲学,描述了一种拥有欲望、信念、意图以及采取行动能力的实体
- AI原生应用:多模态交互技术的5大核心应用场景解析
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络AI-nativeai
#AI原生应用:多模态交互技术的5大核心应用场景解析>关键词:多模态交互、AI原生应用、人机交互、深度学习、应用场景>摘要:本文将深入解析多模态交互技术的核心原理,通过智能家居、医疗诊断、自动驾驶、教育创新和虚拟助手五大应用场景,揭示AI如何像人类感官协同工作般理解世界。文章包含技术原理图解、真实案例代码和未来趋势预测。##背景介绍###目的和范围解析多模态交互技术在AI原生应用中的落地实践,涵盖
- 专知智库数据场景生态:开启全球数字文明新纪元——数据零件×场景编码×SEI指数构建下一代数字经济基座
人形机器人专利池研究中心
数据场景架构师数据零件架构师数据场景生态人工智能数据场景架构师算法大数据
一、传统数字经济的“柏林墙困境”全球产业痛点扫描:数据孤岛化:企业间数据流通成本高达交易额37%(麦肯锡2024)价值黑箱化:85%数据资产无法量化定价(普华永道审计报告)技术碎片化:同类算法重复开发年耗$1800亿破局宣言:专知智库提出“可拆解、可组合、可交易”三可原则,以数据零件+场景编码+SEI计量重构全球数字基础设施二、三大基座:数字经济的新操作系统1.数据零件(DP):技术场景最小单元革
- 10.5 实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力机器学习深度学习人工智能语言模型
实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍在当今人工智能蓬勃发展的时代,大语言模型(LLMs)如ChatGLM3的出现,为自然语言处理领域带来了革命性的变化。企业和开发者们纷纷寻求利用这些强大的模型来构建定制化的应用,以满足特定业务需求。其中,使用私有数据对ChatGLM3进行微调,成为了实现差异化竞争和提供个性化服务的关键途径。然而,在微调过程中,确保批量生成数据的稳定性
- 语言大模型综述
Paper:ASurveyofLargelanguageModels目录Paper:ASurveyofLargelanguageModels综述概要LLM关键技术规模定律(ScalingLaws)预训练与微调对齐调优(AlignmentTuning)外部工具集成GPT系列模型的技术演进模型检查点和APIPre-Training数据准备和处理数据准备数据预处理数据调度架构EmergentArchit
- 【附源码】基于flask框架求职招聘网站 (python+mysql+论文)
本系统(程序+源码)带文档lw万字以上文末可获取本课题的源码和程序系统程序文件列表系统的选题背景和意义选题背景:随着互联网技术的飞速发展,网络求职招聘已经成为了现代人才市场的一大趋势。传统的求职招聘方式逐渐被线上平台所取代,这主要得益于网络平台的便捷性、实时性和广泛性。然而,现有的求职招聘网站虽然数量众多,但质量参差不齐,用户体验也各不相同。一些求职者和招聘者在面对海量信息时,往往会感到无所适从,
- 一个小时快速部署大模型,附大模型书:ChatGLM3大模型本地化部署、应用开发与微调!
LLM教程
人工智能langchain知识图谱Agent大模型LLMAI
这个教程有以下几部分构成:硬件配置概念介绍实操测试结果1.硬件配置本文使用的方法配置要求低,没有gpu也可以正常使用(就是有点慢),不管是windows还是linux,都可以无障碍使用大模型,有脚就行,废话少说,let’srock!2.概念介绍几个部署要用到的概念,工具和项目huggingface:类似于模型的github,各种各样的开源模型都可以在这被找到.模型量化技术:这也是我们能够在低端设备
- 10.6 ChatGLM3私有数据微调实战:24小时打造高精度模型,显存直降60%
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力chatgpt机器学习深度学习人工智能语言模型
ChatGLM3私有数据微调实战:24小时打造高精度模型,显存直降60%1.实战构造私有的微调数据集在微调大模型时,数据质量直接决定模型效果。本节将手把手教你如何构建高质量的私有微调数据集。1.1使用ChatGPT自动设计生成训练数据的Prompt核心思路:通过ChatGPT生成符合任务需求的样本数据,降低人工标注成本。步骤示例(以生成客服对话数据为例):fromlangchain.prompts
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- 企业级图表方案AG Charts v12正式发布:全新功能提升图表交互体验与开发效率
AGGrid成立于英国,致力于提供优秀的企业级数据表格及图表解决方案。AGGrid及AGCharts是其两大主要的高性能企业级JavaScript数据表格及图表解决方案,被全球开发者广泛采用。广泛应用于金融、电信、制造等行业,支持Angular、React、Vue和纯JavaScript项目,拥有企业级的性能与功能深度,凭借其卓越的性能、丰富的功能与高度可定制性,成为构建复杂数据驱动型应用的优选工
- 巨兽的阴影:大型语言模型的挑战与伦理深渊
田园Coder
人工智能科普人工智能科普
当GPT-4这样的庞然大物能够流畅对话、撰写诗歌、编写代码、解析图像,甚至在某些测试中媲美人类专家时,大型语言模型(LLM)仿佛成为了无所不能的“智能神谕”。然而,在这令人目眩的成就之下,潜藏着复杂而严峻的挑战与伦理困境,如同光芒万丈的科技巨兽脚下那片难以忽视的深邃阴影。这些挑战并非技术进步的偶然副作用,而是深植于LLM的运作本质、训练数据来源以及其与社会交互的复杂性之中。它们警示我们,在追逐能力
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$