- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- 我校举行新老教师师徒结对仪式暨名师专业工作室工作交流活动
李蕾1229
为促进我校教师专业发展,发挥骨干教师的引领带头作用,11月6日下午,我校举行新老教师师徒结对仪式暨名师专业工作室工作交流活动。图片发自App会议由教师发展处李蕾主任主持,首先,由范校长宣读新老教师结对名单及双方承担职责。随后,两位新调入教师陈玉萍、莫正杰分别和他们的师傅鲍元美、刘召彬老师签订了师徒结对协议书。图片发自App图片发自App师徒拥抱、握手。有了师傅就有了目标有了方向,相信两位新教师在师
- 四章-32-点要素的聚合
彩云飘过
本文基于腾讯课堂老胡的课《跟我学Openlayers--基础实例详解》做的学习笔记,使用的openlayers5.3.xapi。源码见1032.html,对应的官网示例https://openlayers.org/en/latest/examples/cluster.htmlhttps://openlayers.org/en/latest/examples/earthquake-clusters.
- 准备
胡珊珊乐平九小
尊敬的各位领导、各位同仁们:大家上午好!我是来自乐平九小的胡珊珊。今天很高兴能有机会给大家做“智慧作业”应用培训。说到“智慧作业”我感触颇多,我是在智慧作业中成长起来的,我也时常以自己是一名“智慧作业人”自居。早在2020年疫情期间,学校电教处周光杰主任在学校群里发出智慧作业抢题通知,我看了有些心动,一节微课相当于一次省级公开课,这对于我们普通老师是多么难得的机会啊。但想归想,我也不会用软件啊,再
- 言为爱之声
胡国霞青少年超效注意力
图片发自App焦点工作坊1期连续分享491天胡国霞20190302周六雨《言为爱声》今晚是我们七彩阳光心理咨询中心2019年的第一次公益课,由卷霞来主持,高朋满座,有老朋友,也有新朋友。李老师从身份谈起,平时父母都会给孩子一个什么样的身份,是积极的,还是消极的。我回想一下自己,我是一个追求完美的人,每看到某人身上有一项超人的技能,我都会想儿子要学会了该多好,能文能武、能弹会唱、能写能画,该多好。要
- Python实现关联规则推荐
这孩子谁懂哈
PythonMachineLearningpython关联规则机器学习
1.什么关联规则关联规则(AssociationRules)是反映一个事物与其他事物之间的相互依存性和关联性,如果两个或多个事物之间存在一定的关联关系,那么,其中一个事物就能通过其他事物预测到。关联规则是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。关联规则挖掘的最经典的例子就是沃尔玛的啤酒与尿布的故事,通过对超市购物篮数据进行分析,即顾客放入购物篮中不同商品之间的关
- 从门氏元素周期表看三皇五帝在关中论
霜叶红似二月花y
世间所有物质,都是由不同元素组成的,科学家们”认识物质初期,所有元素也是多年逐一认识的。著名的俄罗斯化学家门捷列耶夫(DmitriMendeleev1834-1907),在1869年首创的元素周期表,想必大家都很熟悉。他是怎么发现元素周期规律并制成表的?最权威的说法是他自己笔记中所记载的,是他做梦所得。门氏元素周期表这个表开始并不完善,但已经有个雏形了。当时只有已知的63种元素。但门氏预测应该有1
- 3.1 损失函数和优化:损失函数
做只小考拉
用一个函数把W当做输入,然后看一下得分,定量地估计W的好坏,这个函数被称为“损失函数”。损失函数用于度量W的好坏。有了损失函数的概念后,就可以定量的衡量W到底是好还是坏,要找到一种有效的方法来从W的可行域里,找到W取何值时情况最不坏,,这个过程将会是一个优化过程。损失函数L_i定义:通过函数f给出预测的分数和真实的目标(或者说是标签y),可以定量的描述训练样本预测的好不好,最终的损失函数是在整个数
- 黄丽红日精进98/105
做自己小太阳
感恩感恩今日份的拍照ing感恩今日份电视重新可以看感恩妹妹帮忙晾衣服感恩在路上的自己感恩我的朋友们和家人见1.今日份看了胡歌的一个节目,2010年的,10年之前,他的真实和有爱感动了我,不愧是我喜欢的胡歌2.今日份每日一练终于自己开始了调整后计划,流行病也开始复习,一切在路上3.妆容精致心情没好,在家注意收拾自己,画个淡妆最起码要精神面貌佳,回村后的我已经很像大妈了!!!感1.自己也是一个温暖的人
- 个人学习笔记7-6:动手学深度学习pytorch版-李沐
浪子L
深度学习深度学习笔记计算机视觉python人工智能神经网络pytorch
#人工智能##深度学习##语义分割##计算机视觉##神经网络#计算机视觉13.11全卷积网络全卷积网络(fullyconvolutionalnetwork,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换。引入l转置卷积(transposedconvolution)实现的,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。13.11.1构造模型下
- 深度学习-点击率预估-研究论文2024-09-14速读
sp_fyf_2024
深度学习人工智能
深度学习-点击率预估-研究论文2024-09-14速读1.DeepTargetSessionInterestNetworkforClick-ThroughRatePredictionHZhong,JMa,XDuan,SGu,JYao-2024InternationalJointConferenceonNeuralNetworks,2024深度目标会话兴趣网络用于点击率预测摘要:这篇文章提出了一种新
- 六实小幼儿园观察日记-幼儿的创造能力 - 草稿
雀跃_1f3b
观察日期:2020年6月18日观察地点:小班教室观察对象:周宇萱、胡依依记录教师:小二班孙蕊观察实录:在今天的区域活动中,我发现了我们班的孩子都非常有创造能力。幼儿在这个年纪有这种的创造和想象能力是非常重要的。我也感到非常的开心。在今天让孩子去选区域,不同的孩子去了不同的区域,也证明不同的孩子之间有着不同的性格爱好。比如,我们班的的周宇萱,他在娃娃家可以利用一些蔬菜玩具,可以发挥自己的想象力,利用
- 损失函数与反向传播
Star_.
PyTorchpytorch深度学习python
损失函数定义与作用损失函数(lossfunction)在深度学习领域是用来计算搭建模型预测的输出值和真实值之间的误差。1.损失函数越小越好2.计算实际输出与目标之间的差距3.为更新输出提供依据(反向传播)常见的损失函数回归常见的损失函数有:均方差(MeanSquaredError,MSE)、平均绝对误差(MeanAbsoluteErrorLoss,MAE)、HuberLoss是一种将MSE与MAE
- BP神经网络的传递函数
大胜归来19
MATLAB
BP网络一般都是用三层的,四层及以上的都比较少用;传输函数的选择,这个怎么说,假设你想预测的结果是几个固定值,如1,0等,满足某个条件输出1,不满足则0的话,首先想到的是hardlim函数,阈值型的,当然也可以考虑其他的;然后,假如网络是用来表达某种线性关系时,用purelin---线性传输函数;若是非线性关系的话,用别的非线性传递函数,多层网络时,每层不一定要用相同的传递函数,可以是三种配合,可
- AIGC图生视频技术下的巴黎奥运高光时刻
阿里云视频云
AIGC与媒体生产AIGC
共享,奥运夺金时刻。巴黎奥运会的高光片段中国奥运的夺金时刻动漫风格下的别样风态以下AI动漫视频内容BY「阿里云视频云」智能生成从首金到21金镜头倒转尽情回顾······更多巴黎奥运高光时刻更多AIGC精彩内容可在「新华社官方」新媒体账号观看阿里云视频云用视频云+AI,持续助力奥运
- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- 焦点学习分享第34天
3ab85c045972
好智慧父母课二期胡素敏(2021.1.1)我们没有选择的机会。新的一年就这样开始了!一切都这么美好!俩孩子难得都在家在享受温暖的被窝儿。那是属于宝贝们久违的幸福时光。感恩我最爱的亲人、感恩我认识的人,和认识我的人。一切美好都将伴随着幸福的人。新的一年对一些微笑,多一些幸福!2021年注定是美好的,是收获的,也更是自己不断成长、不断扩容的开始。
- 元宵节活动
湘子_5b16
2019-2-19号深圳新东方烹饪学校组织了一场非常有意义的元宵节活动~即每人发30块代金券,用于购买其它班级元宵节展出的食品。听起来好诱人啊,我们可以买中餐班的泡椒凤爪,烧烤,火锅,东北夹馍饼,西餐的西式烩饭,BBQ烤全翅,三明治,法式烤土豆,香煎墨鱼丸,炸鸡米花,海草寿丝,鱼仔酱寿丝,西点班的小点心,奶茶,饼干,蛋糕,居然还有北京的冰糖胡芦…看到这么多花样多,品种多,又美味的东西,怎能不叫人垂
- Python和R均方根误差平均绝对误差算法模型
亚图跨际
Python交叉知识R回归模型误差指标归一化均方根误差生态状态指标神经网络成本误差气体排放气候模型多项式拟合
要点回归模型误差评估指标归一化均方根误差生态状态指标神经网络成本误差计算气体排放气候算法模型Python误差指标均方根误差和平均绝对误差均方根偏差或均方根误差是两个密切相关且经常使用的度量值之一,用于衡量真实值或预测值与观测值或估计值之间的差异。估计器θ^\hat{\theta}θ^相对于估计参数θ\thetaθ的RMSD定义为均方误差的平方根:RMSD(θ^)=MSE(θ^)=E((θ^−θ
- 为何马皇后送给刘伯温“一梨两枣”后刘伯温就告老还乡了?
薛白袍
传说大明王朝建立以后,一次,马皇后送刘伯温一梨两枣,劝他早早离开朝廷这是非之地。这又是一个用民间故事的方式来琢磨皇帝家的事情,就好像两个老农在地头猜测皇帝家每天都吃好吃的,天天烙饼卷鸡蛋一样。关键是马皇后劝刘伯温早早离的主意,也没起到什么作用,刘伯温告老还乡,回到青田老家。没过多久就因为胡惟庸告他想把自己的墓地建在风水宝地,老朱没说啥,刘伯温心生惶恐,赶紧回到京城,在朱元璋的眼皮子底下待到病重,才
- 人的欲望
天高海阔_2a59
今天我早晨8点就来到了静雅山庄,觉得太早了会影响到老师,我在外面路边坐了一会,当时心里很想去那个绿色的房间,哪怕十分钟,让我能有一种心灵上的安宁,终于在八点半,我走到门前,按响门铃,马上胡老师就来开门了,我有点歉疚的说我来早了,胡老师说刚刚好。我发现不管自己的心情多糟糕,听胡老师说完话,就有一种登泰山君临天下的感觉,所有的事都是那么微不足道。我说了我今天焦虑的原因,和胡老师交流,这时高姐来了,她很
- 平平无奇的逃命小天才carry全场,李春来凭啥全剧血条最长?
娱史通鉴
如果问我,最近印象最深刻的角色是哪个?我一定会说——李春来!刚刚收官的《龙岭迷窟》以豆瓣8.3分的高口碑持续发酵,如果你跟上潮流看了这部剧,一定会知道这个胆小的农民是谁。本来是冲着《鬼吹灯》系列的好口碑点开了这部剧,却万万没想到,竟然被一个在原著里出场几章就领盒饭的农民圈了粉;也万万没想到,胡明饰演的李春来成了新一届快乐源泉。作为胆小贪财的农民,李春来的出场就诠释了他的“怂”,以马大胆为首的古蓝十
- python数据分析知识点大全
编程零零七
python数据分析python开发语言python数据分析数据分析知识点大全python数据分析知识点python教程python基础
Python数据分析知识点大全可以归纳为以下几个主要方面:一、基础概念与目的数据分析定义:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论,对数据加以详细研究和概括总结的过程。其目的在于从数据中挖掘规律、验证猜想、进行预测。Python在数据分析中的优势:Python因其易学性、快速开发、丰富的扩展库(如NumPy、Pandas等)和成熟的框架,成为数据分析领域的
- 历经靳东、阮经天,胡八一的大旗被潘粤明扛起,摸金宇宙即将成形
生如稗草
鬼吹灯系列网剧「龙岭迷窟」你最近看了没有?这段时间一直在热播的「鬼吹灯之龙岭迷窟」而这一次,潘粤明抗起了胡八一的大旗。其实“企鹅”自从签下了“鬼吹灯”全部8本的版权之后,这应该是第4部上映的鬼吹灯系列网剧了,而这4部上映的鬼吹灯网剧却有不同的主角,比如当年的「精绝古城」,第1次出演胡八一的是靳东,当时的「精绝古城」有口碑有播放量,但是为什么现在的胡八一却成了潘粤明?客观来讲,大部分的中国人都有先入
- Chat GPT带来的几点思考
淡定的胡萝卜
OpenAI公司推出的ChatGPT引起了广泛关注,网上出现各类专家开始预测随着ChatGDP的普及,将会有哪些行业的人面临失业,引发人们的焦虑。不可否认它会给我们的教育行业、媒体行业、学术界等众多行业产生影响,面对这些影响,我们该如何看待呢?近期我阅读了不少相关文章,引发的几点思考,想与大家分享。ChatGPT将会倒逼传统教育的改革。中国传统教育是教师对知识点的传授、学生对知识点的掌握,不仅量多
- 演员胡歌的小人物情怀:观《南方车站的聚会》有感
心安家
是什么让演员胡歌一改以往正义的英雄形象,堕落成为亡命徒,通缉犯呢?新电影《南方车站的聚会》:胡歌以主演身份登场,饰演仓皇逃命的罪犯周泽农,一个彻头彻尾的小人物形象,得知自己被举报抓捕后会有30万的悬赏金,便想方设法给老婆传递消息,希望5年未见的老婆去主动举报自己,给家人争取最后的活命钱,真的是一笔拿命换钱的交易。正是这个亡命之徒心中对家人仅存的一丝善念,打动了胡歌的内心,因为胡歌和周泽农一样,总在
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- 2019年7月18日朱彬语的观察日志 - 草稿
ic班
今天彬语在老师的引导下选择了八大行星图卡配对的复习工作本次主要学习(木星,土星,地球)的名称,这份工作主要培养孩子的观察能力、专注力以及八大行星名称的学习。在这周周一彬语开始做八大行星的图卡配对,彬语在老师的提示下,就已经能顺利准确的完成,接着在和老师的讨论中,彬语拿起了地球说到“这是地球,有人住”,接着指着木星和土星的图卡分别说“这是最大的”“它有一个游泳圈”……那我们就先学习“地球,木星,土星
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 数字化供应链架构、全景管理、全流程贯通整体解决方案:供应链管理就是利用管理工具、IT技术将企业引入外部资源的过程精细化、标准化管理,实现高效益低成本运营。
数字化建设方案
数字化转型数据治理主数据数据仓库智能制造数字工厂制造业数字化转型工业互联网供应链数字仓储智慧物流智慧仓储物流园区架构大数据
数字化供应链架构、全景管理、全流程贯通方案数字化供应链架构、全景管理、全流程贯通方案项目背景与目标供应链管理现状及挑战数字化供应链架构概念及优势全景管理与全流程贯通目标预期成果与效益智能管理机制建设需求预测与智能分析应用合同管理智能化提升举措仓储管理自动化和机器人技术应用物流配送优化策略周边系统整合与数据贯通现有系统梳理及评估报告数据接口标准制定和实施计划流程对接和数据交互机制设计监控和报警机制完
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C