- 本地部署model scope魔搭大模型流程
CQller
python算法深度学习机器学习jupyterpytorch
一、安装python二、安装Gradio三、添加镜像加速四、运行字符串倒叙五、运行绘图六、安装常用软件包和库七、我目前使用的软件包和库简介八、文字生成图片AI模型九、文字回复AI模型一、安装python可参考安装步骤:python学习笔记-python安装与环境变量配置_python环境变量-CSDN博客二、安装Gradio在cmd执行以下命令。Gradio封装了功能丰富的前端用户界面,一会儿用来
- 清华发布:DeepSeek学习教程ppt 104页完整版免费分享
2501_90649720
人工智能学习
最近国产DeepSeek火出圈,其出色的性能和巨大的潜力引得各路资本巨头蜂蛹而入,纷纷与其合作。红遍世界。在DeepSeek火遍世界时,清华大学的博士后团队默默出品了一份名为《DeepSeek:从入门到精通》的ai教学课程。课程一经发布,就引得各个自媒体ai博主的疯传,一度冲上热搜。我专门去看了一下这个教程,确实够硬,够专业,够全面!完整版教程资源我已经帮大家整理好放下面了,大家自行领取。资源链接
- html5游戏引擎-Pharse.js学习笔记(一)
18520195858
游戏javascriptc/c++ViewUI
1.前言前几天随着flappybird这样的小游戏的火爆,使我这种也曾了解过html5技术的js业余爱好者也开始关注游戏开发。研究过两个个比较成熟的html5游戏引擎,感觉用引擎还是要方便一些。所以决定从今天正式开始研究html5游戏引擎,并且将从看官网demo的学习整理成博客和大家一起分享。我了解过cocos-2dforhtml5和phaser.js这两个引擎,其中前者比较复杂,对于有过coco
- vue 判断mp3是否加载成功
xuelong-ming
前端vue.jsjavascript前端
一、需求vueMP3加载时,有可能遇到后端没有MP3,但是返回有链接。要求获取MP3失败提示用户,MP3获取失败。二、代码canPlayAudio(url){//判断录音是否加载constaudio=newAudio(url)returnnewPromise((resolve,reject)=>{audio.oncanplay=()=>{resolve(true)audio.remove()}au
- GBase 8a数据库多并发insert性能缓慢的优化
GBASE数据库
数据库国产数据库GBaseGBASE南大通用
原文链接:https://www.gbase.cn/community/post/4847更多精彩内容尽在南大通用GBase技术社区,南大通用致力于成为用户最信赖的数据库产品供应商。多并发insert缓慢优化场景分析在业务上或者数据迁移时,经常会出现对同一张表进行多并发的insertvalues操作,GBase8a虽然支持标准的sql插入方式,但同一般的关系型数据库对比,8a的强项在于大事务和大数
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 30.4:Python如何安装Pandas库? (课程共4100字)
小兔子平安
Python完整学习全解答pythonpandas开发语言
课程概述(课程共4100字)①安装Pandas库打开命令提示符或终端窗口,输入以下命令来安装Pandas:当安装完成后,可以使用以下命令来验证Pandas是否已正确安装:②数据处理和分析读写数据数据清洗和预处理数据分组和聚合数据可视化③Python学习的深入讨论Python的应用领域Python的优点和缺点学习Python的建议学习Python的挑战课程总结课程概述Python是一种功能强大的编程
- 基于 GBase 数据库的海量数据处理与性能优化
big crab
数据库oracle
一、引言随着大数据时代的到来,海量数据的存储和高效处理成为各行业的核心需求。GBase系列数据库(包括GBase8a、GBase8s和GBase8c)以其强大的性能、灵活的存储架构以及高效的查询优化功能,成为处理大规模数据的理想选择。本文将从GBase数据库的特性出发,探讨如何在实际应用中进行海量数据的高效处理,同时提供相关代码示例,帮助开发者更好地理解和应用GBase数据库。二、GBase数据库
- linux es后台启动命令,小白学ES 02-Linux中部署Elasticsearch单机服务
热带汽水
linuxes后台启动命令
目录@此部署过程以Elasticsearch-5.6.10版本为例,后续的学习和演示也用此版本.1前提:安装JDK学习使用ES的前提是成功安装JDK——很基础的一项步骤,这里省略.此处学习演示所用的JDK版本为:[root@host-10-0-20-50~]#java-versionjavaversion"1.8.0_151"Java(TM)SERuntimeEnvironment(build1.
- gbase导入sql文件_GBase数据库——常用命令
weixin_39706561
gbase导入sql文件
1数据库操作与维护1.1数据库启停[root@OMMB-66-V10-001~]#servicegcwarestopStoppingGCMonitsuccess!SignalingGCRECOVER(gcrecover)toterminate:[OK]Waitingforgcrecoverservicestounload:.....[OK]SignalingGCSYNC(gc_sync_serve
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- IDEA接入GPT王炸秘籍,开发分析界面与ChatGPT直接无缝衔接
数行天下
AI赋能intellij-ideagptchatgptpythonjava
大家好,我是数行天下,普通中间群体是凭借技术或业务在各行各业打工的重要群体,是AI技术的实践和推动者,个体的数字化程度越高就越能在百年未有之变局的AI时代赢得先机。各行各业数据分析、系统开发人员,科研领域研究人员,设计师,及各单位文字工作者等,谁能快速学习、加快效率,产出的内容更优质,在内卷化日益严重的环境中就更有竞争力。由于各种限制,大部分人无法有效使用GPT,即使费力注册成功也因为科学上网时间
- 了解SQL Server不同版本(如Express、Standard、Enterprise)的功能差异和适用场景。
web15117360223
面试学习路线阿里巴巴express大数据数据库
一、SQLServerExpress版本(一)功能特点数据库大小限制:SQLServerExpress版本数据库的最大大小限制为10GB。这对于小型应用程序、个人项目或者初学者学习和开发简单的数据库应用是足够的。例如,一个小型的学生成绩管理系统,用于记录班级学生的成绩、课程信息等,其数据量通常不会超过这个限制。资源使用限制:该版本使用的内存限制为1GB,处理器核心数也有限制。这使得它在资源占用方面
- LLM 大模型学习必知必会系列(一):大模型基础知识篇
汀、人工智能
LLM技术汇总人工智能自然语言处理promptRAGLLM模型训练模型部署
LLM大模型学习必知必会系列(一):大模型基础知识篇魔搭ModelScope开源的LLM模型魔搭ModelScope欢迎各个开源的LLM模型在社区上做开源分享。目前社区上已经承载了来自各个机构贡献的不同系列的LLM模型。并且社区的开发者也在这些模型的基础上,贡献了许多创新应用,并在ModelScope的创空间上进行分享。本专题初步梳理了当前社区上一些典型的LLM以及对应的创空间应用,方便大家对于L
- Part 3 第八章 风格指南与规则(Style Guides and Rules)
odoo中国
软件工程软件工程
概要第八章探讨了Google如何通过风格指南和规则来管理其庞大的代码库,并确保代码的可维护性和一致性。以下是本章的核心内容:1.为什么需要规则?规则的目标:规则旨在鼓励“好的”行为并阻止“坏的”行为。这些定义因组织而异,取决于组织的目标和价值观。规则与指导的区别:规则是强制性的法律,而指导则是建议和最佳实践,通常允许一定的灵活性。Google的风格指南:Google的风格指南不仅是代码格式化的集合
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- OpenWebUI,RAG+外部知识库+AI写文的开源应用
m0_74824780
人工智能开源
引言自从去年AI火起来之后,很多人便热衷于寻找适合自用的AI开源项目,把各家大模型API接入到自己的AI程序里,便可以通过AI辅助完成一系列日常任务,比如内容翻译/润色/总结/撰写、格式转换、数据分类、代码分析、角色扮演等等。一般情况下,大模型依靠自身训练数据便能够完成的任务质量偏高,像翻译总结、格式转换之类,市面上所有的AI程序基本都能够满足这一点需求;但是需要结合外部资料/超长上文信息/实时信
- 深入理解TensorFlow中的形状处理函数
SEVEN-YEARS
tensorflow人工智能python
摘要在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_shape_list、reshape_to_matrix、reshape_from_matrix和assert_rank,并通过具体的代码示例来展示它们的使用方法。1.引言在深
- 解决linux中pip速度过慢问题
江城闲鹤
linuxpippython
在Linux系统下,如果你发现使用pip下载Python库时速度非常慢,可以考虑以下几种方法来加速下载:使用pip的-i选项:如果你只想临时使用其他镜像,可以在安装时加上-i选项:pipinstallpackage_name-ihttps://mirrors.aliyun.com/pypi/simple/
- 基于iNeuOS工业互联网平台的板材实时质检系统
iNeuOS工业互联网
iNeuOS工业互联网人工智能物联网
1.项目背景刨花板生产线由于原料、生产工艺等原因,会有一些产品板面出现颤纹、漏砂、胶斑、胶块、大刨花、粉尘斑、板面划痕和油污等缺陷。表面缺陷会降低板材强度、影响板材外观和二次加工,给企业带来经济损失。目前针对刨花板的瑕疵识别工作主要以人工检测为主,缺陷种类繁多和视觉疲劳导致漏检率和误检率较高,极大限制了工厂的生产效率和产品质量。同时,工厂现有刨花板产线质检环节无法积累生产过程数据、无法形成有效数据
- <Attention Is All You Need>:全网首次提出Transformer模型论文中英文对照学习
kingking44
transformer学习人工智能
论文摘要英文Thedominantsequencetransductionmodelsarebasedoncomplexrecurrentorconvolutionalneuralnetworksthatincludeanencoderandadecoder.Thebestperformingmodelsalsoconnecttheencoderanddecoderthroughanattenti
- 深入探讨:CME期货CBOT高频合约历史行情数据分析方法
hightick
外盘期货高频历史行情数据集数据分析数据挖掘金融python数据库
深入探讨:CME期货CBOT高频合约历史行情数据分析方法为了促进学习和研究,我们在此分享一部分匿名处理的外盘期货高频历史行情数据集。外盘期货分钟高频历史行情数据链接:https://pan.baidu.com/s/19zhe1CCpDM56amDKO2nMwQ?pwd=4wpq提取码:4wpq请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。交易量与价格关系分析交易量与价格之间的关系
- 时间序列分析之AR、MA、ARMA、ARIMA详解(5)
白马负金羁
机器学习之术协整cointegrationARIMA时间序列分析
在时间序列分析中最常使用的一系列模型:AR、MR、ARMA,一直到ARIMA,都源于乔治·博克斯和格威利姆·詹金斯等人的一系列工作(他们的有关成果后汇集成该领域的权威经典著作【1】)。乔治·博克斯被认为是二十世纪的一代统计学大师,他有一句广为人知的名言:所有的模型都是错误的,但有一些是有用的(“Allmodelsarewrong,butsomeareuseful”)。为了让统计模型发挥作用,深入理
- 数字内容体验未来趋势:五大平台横向对比与深度解析
清风徐徐de来
其他
内容概要当前,企业数字化转型的核心战场正逐步向数字内容体验的精细化运营转移。随着用户行为碎片化与需求多元化趋势加剧,AI驱动的智能推荐系统、基于数据决策的动态优化能力,以及跨渠道的品牌一致性维护,已成为衡量内容平台竞争力的三大核心维度。本文将围绕这三大支柱,通过横向对比主流平台的技术架构与落地实践,揭示未来数字内容体验的演进方向。首先,AI驱动不仅改变了内容分发的效率,更通过深度学习算法实现用户行
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- GBase 数据库的高性能架构与优化实践
big crab
数据库架构
引言随着信息技术的快速发展,数据库作为支撑各行各业数据存储和处理的核心技术之一,承担着越来越重要的角色。在现代企业中,大数据量、复杂查询和高并发处理已成为普遍需求。GBase数据库作为国内领先的数据库产品之一,提供了卓越的性能和灵活的架构设计,能够高效处理复杂的事务、分析查询和海量数据。本文将探讨GBase数据库的高性能架构,并结合实际案例展示其优化实践。一、GBase数据库架构概述GBase数据
- shell脚本定时备份mysql数据库
小爱是金毛o
数据库mysqlvimcentoslinux
系列文章目录1.mysqldump常用命令语法2.编写命令3.将命令写入shell脚本4.写入定时任务示例系统:centos7mysql版本:5.7一、mysqldump命令全量备份(数据+结构):mysqldump-uroot-p123456-A>备份文件路径指定库备份(数据+结构):mysqldump-uroot-p123456库名>备份文件路径多个库备份(数据+结构):mysqldump-u
- Netty如何优雅地解决TCP粘包、拆包问题
星辰@Sea
系统架构Javatcp/ip网络网络协议Netty
引言在TCP/IP协议族中,TCP(传输控制协议)是一个面向连接的、可靠的、基于字节流的传输层协议。TCP协议确保了数据能够可靠地从一个端点传输到另一个端点,但它并没有提供消息边界的概念。这意味着,当数据被发送时,可能会出现“粘包”(数据包被合并)或“拆包”(数据包被分割)的问题。这对开发人员来说是一个挑战,因为如果不正确处理这些问题,可能导致应用程序的逻辑错误或性能问题。在本文中,我们将深入探讨
- SpringBoot整合H2并使用Flyway管理数据库版本
程序猿Ryan
springbootspringboot
SpringBoot整合H2并使用Flyway管理数据库版本一、H2数据库简介1、H2数据库是一个开源的关系型数据库。H2是一个嵌入式数据库引擎,采用java语言编写,不受平台的限制,同时支持网络版和嵌入式版本,有比较好的兼容性,支持相当标准的sql标准,支持集群2、提供JDBC、ODBC访问接口,提供了非常友好的基于web的数据库管理界面二、H2数据库连接方式1、以嵌入式(本地)连接方式连接H2
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite