AQS全称AbstractQueuedSynchronizer,即抽象的队列同步器,是一种用来构建锁和同步器的框架。AQS 解决了在实现同步器时涉及的大量细节问题,例如自定义标准同步状态、FIFO 同步队列。基于 AQS 来构建同步器可以带来很多好处。它不仅能够极大地减少实现工作,而且也不必处理在多个位置上发生的竞争问题。
基于AQS构建同步器:
AQS 抽象的同步队列
如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。如图所示
Sync queue: 同步队列,是一个双向列表。包括head节点和tail节点。head节点主要用作后续的调度。
Condition queue: 非必须,单向列表。当程序中存在condition的时候才会存在此列表。
AQS它的所有子类中,要么实现并使用了它的独占功能的api,要么使用了共享锁的功能,而不会同时使用两套api,即便是最有名的子类ReentrantReadWriteLock也是通过两个内部类读锁和写锁分别实现了两套api来实现的
因为只有前驱节点是head节点的节点才能被首先唤醒去进行同步状态的获取。当该节点获取到同步状态时,它会清除自己的值,将自己作为head节点,以便唤醒下一个节点。
在构建自定义同步器时,只需要依赖AQS底层再实现共享资源state的获取与释放操作即可。自定义同步器实现时主要实现以下几种方法:
线程首先尝试获取锁,如果失败就将当前线程及等待状态等信息包装成一个node节点加入到FIFO队列中。 接着会不断的循环尝试获取锁,条件是当前节点为head的直接后继才会尝试。如果失败就会阻塞自己直到自己被唤醒。而当持有锁的线程释放锁的时候,会唤醒队列中的后继线程。
所谓独占模式,即只允许一个线程获取同步状态,当这个线程还没有释放同步状态时,其他线程是获取不了的,只能加入到同步队列,进行等待。
很明显,我们可以将state的初始值设为0,表示空闲。当一个线程获取到同步状态时,利用CAS操作让state加1,表示非空闲,那么其他线程就只能等待了。释放同步状态时,不需要CAS操作,因为独占模式下只有一个线程能获取到同步状态。ReentrantLock、CyclicBarrier正是基于此设计的。
ReentrantLock,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。
独占模式下的AQS是不响应中断的,指的是加入到同步队列中的线程,如果因为中断而被唤醒的话,不会立即返回,并且抛出InterruptedException。而是再次去判断其前驱节点是否为head节点,决定是否争抢同步状态。如果其前驱节点不是head节点或者争抢同步状态失败,那么再次挂起。
3.1.1 独占模式获取资源-acquire方法
acquire以独占exclusive方式获取资源。如果获取到资源,线程直接返回,否则进入等待队列,直到获取到资源为止,且整个过程忽略中断的影响。源码如下
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
流程图:
3.1.2 独占模式获取资源-tryAcquire方法
tryAcquire尝试以独占的方式获取资源,如果获取成功,则直接返回true,否则直接返回false,且具体实现由自定义AQS的同步器实现的。
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
3.1.3 独占模式获取资源-addWaiter方法
根据不同模式(Node.EXCLUSIVE互斥模式、Node.SHARED共享模式)创建结点并以CAS的方式将当前线程节点加入到不为空的等待队列的末尾(通过compareAndSetTail()方法)。如果队列为空,通过enq(node)方法初始化一个等待队列,并返回当前节点。
/**
* 参数
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* 返回值
* @return the new node
*/
private Node addWaiter(Node mode) {
//将当前线程以指定的模式创建节点node
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
// 获取当前同队列的尾节点
Node pred = tail;
//队列不为空,将新的node加入等待队列中
if (pred != null) {
node.prev = pred;
//CAS方式将当前节点尾插入队列中
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//当队列为empty或者CAS失败时会调用enq方法处理
enq(node);
return node;
}
其中,队列为empty,使用enq(node)处理,将当前节点插入等待队列,如果队列为空,则初始化当前队列。所有操作都是CAS自旋的方式进行,直到成功加入队尾为止。
private Node enq(final Node node) {
//不断自旋
for (;;) {
Node t = tail;
//当前队列为empty
if (t == null) { // Must initialize
//完成队列初始化操作,头结点中不放数据,只是作为起始标记,lazy-load,在第一次用的时候new
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
//不断将当前节点使用CAS尾插入队列中直到成功为止
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
3.1.4 独占模式获取资源-acquireQueued方法
acquireQueued用于已在队列中的线程以独占且不间断模式获取state状态,直到获取锁后返回。主要流程:
final boolean acquireQueued(final Node node, int arg) {
//是否已获取锁的标志,默认为true 即为尚未
boolean failed = true;
try {
//等待中是否被中断过的标记
boolean interrupted = false;
for (;;) {
//获取前节点
final Node p = node.predecessor();
//如果当前节点已经成为头结点,尝试获取锁(tryAcquire)成功,然后返回
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//已经尝试获取锁,但还是失败,当然也可能p不是头节点
//parkAndCheckInterrupt让线程进入等待状态,并检查当前线程是否被可以被中断
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
//将当前节点设置为取消状态;取消状态设置为1
if (failed)
cancelAcquire(node);
}
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* 前驱节点已经设置了SIGNAL,闹钟已经设好,现在我可以安心睡觉(阻塞)了。
* 如果前驱变成了head,并且head的代表线程exclusiveOwnerThread释放了锁,
* 就会来根据这个SIGNAL来唤醒自己
*/
return true;
if (ws > 0) {
/*
* 发现传入的前驱的状态大于0,即CANCELLED。说明前驱节点已经因为超时或响应了中断,
* 而取消了自己。所以需要跨越掉这些CANCELLED节点,直到找到一个<=0的节点
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* 进入这个分支,ws只能是0或PROPAGATE。
* CAS设置ws为SIGNAL
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
3.1.5 独占模式释放资源-release方法
release方法是独占exclusive模式下线程释放共享资源的锁。它会调用tryRelease()释放同步资源,如果全部释放了同步状态为空闲(即state=0),当同步状态为空闲时,它会唤醒等待队列里的其他线程来获取资源。这也正是unlock()的语义,当然不仅仅只限于unlock().
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
3.1.6 独占模式释放资源-tryRelease方法
tryRelease()跟tryAcquire()一样实现都是由自定义定时器以独占exclusive模式实现的。因为其是独占模式,不需要考虑线程安全的问题去释放共享资源,直接减掉相应量的资源即可(state-=arg)。而且tryRelease()的返回值代表着该线程是否已经完成资源的释放,因此在自定义同步器的tryRelease()时,需要明确这条件,当已经彻底释放资源(state=0),要返回true,否则返回false。
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
ReentrantReadWriteLock的实现:
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
//减掉相应量的资源(state-=arg)
int nextc = getState() - releases;
//是否完全释放资源
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
3.1.7 独占模式释放资源-unparkSuccessor
unparkSuccessor用unpark()唤醒等待队列中最前驱的那个未放弃线程,此线程并不一定是当前节点的next节点,而是下一个可以用来唤醒的线程,如果这个节点存在,调用unpark()方法唤醒。
private void unparkSuccessor(Node node) {
//当前线程所在的结点node
int ws = node.waitStatus;
//置零当前线程所在的结点状态,允许失败
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
//找到下一个需要唤醒的结点
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
// 从后向前找
for (Node t = tail; t != null && t != node; t = t.prev)
//从这里可以看出,<=0的结点,都是还有效的结点
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
//唤醒
LockSupport.unpark(s.thread);
}
共享模式,当然是允许多个线程同时获取到同步状态,共享模式下的AQS也是不响应中断的. 很明显,我们可以将state的初始值设为N(N > 0),表示空闲。每当一个线程获取到同步状态时,就利用CAS操作让state减1,直到减到0表示非空闲,其他线程就只能加入到同步队列,进行等待。释放同步状态时,需要CAS操作,因为共享模式下,有多个线程能获取到同步状态。CountDownLatch、Semaphore正是基于此设计的。
例如,CountDownLatch,任务分为N个子线程去执行,同步状态state也初始化为N(注意N要与线程个数一致):
3.2.1 共享模式获取资源-acquireShared方法
acquireShared在共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
流程:
3.2.2 共享模式获取资源-tryAcquireShared方法
tryAcquireShared() 跟独占模式获取资源方法一样实现都是由自定义同步器去实现。但AQS规范中已定义好tryAcquireShared()的返回值:
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
3.2.3 共享模式获取资源-doAcquireShared方法
doAcquireShared()用于将当前线程加入等待队列尾部休息,直到其他线程释放资源唤醒自己,自己成功拿到相应量的资源后才返回。
private void doAcquireShared(int arg) {
//加入队列尾部
final Node node = addWaiter(Node.SHARED);
//是否成功标志
boolean failed = true;
try {
//等待过程中是否被中断过的标志
boolean interrupted = false;
for (; ; ) {
final Node p = node.predecessor();//获取前驱节点
if (p == head) {//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,很可能是head用完资源来唤醒自己的
int r = tryAcquireShared(arg);//尝试获取资源
if (r >= 0) {//成功
setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
p.next = null; // help GC
if (interrupted)//如果等待过程中被打断过,此时将中断补上。
selfInterrupt();
failed = false;
return;
}
}
//判断状态,队列寻找一个适合位置,进入waiting状态,等着被unpark()或interrupt()
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
3.2.4 共享模式释放资源-releaseShared方法
releaseShared()用于共享模式下线程释放共享资源,释放指定量的资源,如果成功释放且允许唤醒等待线程,它会唤醒等待队列里的其他线程来获取资源。
public final boolean releaseShared(int arg) {
//尝试释放资源
if (tryReleaseShared(arg)) {
//唤醒后继结点
doReleaseShared();
return true;
}
return false;
}
独占模式下的tryRelease()在完全释放掉资源(state=0)后,才会返回true去唤醒其他线程,这主要是基于独占下可重入的考量;而共享模式下的releaseShared()则没有这种要求,共享模式实质就是控制一定量的线程并发执行,那么拥有资源的线程在释放掉部分资源时就可以唤醒后继等待结点。
3.2.5 共享模式释放资源-doReleaseShared方法
doReleaseShared()主要用于唤醒后继节点线程,当state为正数,去获取剩余共享资源;当state=0时去获取共享资源。
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue;
//唤醒后继
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue;
}
// head发生变化
if (h == head)
break;
}
}
ReentrantLock lock=new ReentrantLock();
lock.lock();
//dothing
lock.unlock();
如上代码所示是锁的使用方式,可以通过 ReentrantLock的lock和unlock来独占一段代码的执行权限。
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
如上当使用默认的构造函数的时候使用的是非公平的锁,当使用的是传参数的时候,使用的是公平锁。此时我们看一下 Sync sync变量的源代码。
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
//获取锁的方式交给子类实现
abstract void lock();
/*
1)非公平锁尝试获取锁的时候 检查占用状态如果是0表示线程没有被占用
2)如果status==0 占用线程,并设置排它线程为当前线程 获取锁结束
3) 如果锁被占用当前线程又等于排它线程 则是锁重入状态+acqures然后设置状态返回
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
/*
1 ) 释放锁的时候 通过获取当前锁状态减去要释放的状态量
2 )如果当前状态已经释放为0了 说明已经没有锁占用了,设置当前线程为占用线程 更新状态值 返回已经释放
**/
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
1)如果当前线程是头节点或者队列为空返回false
2) 如果队列中有线程在处理当前线程返回true
public final boolean hasQueuedPredecessors() {
Node t = tail;
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
//释放锁的使用唤醒等待队列中别的线程
//
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
private void unparkSuccessor(Node node) {
1) 如果当前节点的状态还在阻塞 那么就设置为可唤醒状态
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
1) 如果当前节点有下一个节点就 而且waitStatus>0 说明队列中有更早的可唤醒节点
2) 从队尾往队头依次检索出那个最早可唤醒的节点
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
//进行唤醒操作
if (s != null)
LockSupport.unpark(s.thread);
}
//获取锁这个上面的方法有讲解
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
//......略
}
子类实现的代码
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* 如果没有锁占用就获取锁
*
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
/**
* 调用父类尝试获取锁
*/
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/***
* 1)若果锁状态没有被占用就获取锁,并且等待队列中没有线程占用,就设置当前线程获取到锁
* 2) 如果锁被占用且是当前线程就重入
* 3) 否则获取锁失败
**/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//调用父类的方法判断队列中有没有等待的线程
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
可以看到如下图所示的一个类结构层次关系图。如图所示Sync集成自同步器。定义了一个抽象的获取锁的方法lock()和 release()来实现线程的等待与唤醒操作。
把对应的实现交给了FairSync/NonfairSync 锁进行独立的实现。其他的同步器实现原理也是类似于这个,都是基于AQS进行实现的,其中原理就不在多做解释了。