- Mongodb数据库的基本语法及使用
璟*
Python
数据库MongoDB(芒果数据库)数据存储阶段文件管理阶段(.txt.doc.xls)优点:数据可以长期保存可以存储大量的数据使用简单缺点:数据一致性差数据查找修改不方便数据冗余度可能比较大数据库管理阶段优点:数据组织结构化降低了冗余度提高了增删改查的效率容易扩展方便程序调用,做自动化处理缺点:需要使用sql或者其他特定的语句,相对比较复杂几个概念数据:能够输入到计算机中并被识别处理的信息集合数据
- 132java ssm springboot基于大数据的吉林省农村产权交易数据分析可视化平台系统(源码+文档+运行视频+讲解视频)
QQ2279239102
springboot大数据数据分析开发语言mavenvue.js
文章目录系列文章目录目的前言一、详细视频演示二、项目部分实现截图三、技术栈后端框架springboot前端框架vue持久层框架MyBaitsPlus系统测试四、代码参考源码获取目的摘要:本文介绍了基于JavaSSM和SpringBoot开发的吉林省农村产权交易数据分析可视化平台系统,为农村产权交易市场提供决策支持。系统前端利用HTML、CSS和JavaScript构建直观的可视化界面,后端运用Ja
- 系统对接方案_浅谈RPA系统
weixin_39881760
系统对接方案
首先本文是有感而发,其次是我本身是大数据和人工智能领域产品多年从业者,并不局限于RPA领域,做过一些RPA项目也和客户沟通并且提供过顾问和咨询服务,所以有一定理解。从网上可见的大部分文章包括本问题下面的回答中,都可以看到,大部分是宏观回答,从狭义来说,RPA可以是一个软件工具、可以是一套系统也可以是一个平台;RPA可以让办公自动化、业务流程自动化。从广义来说,任何一个可被规则化且突发、未知情况少的
- 一文揭秘!Java 如何与 Elasticsearch 完美 “牵手”?
程序员顾茗
javaelasticsearch
引言本文适合有一定Java编程基础,且对搜索引擎技术感兴趣,尤其是希望在项目中运用Elasticsearch实现高效数据检索与分析功能的开发人员阅读。在当今大数据和高并发的时代,高效的数据检索与分析变得愈发关键。Elasticsearch作为一款强大的分布式搜索和分析引擎,受到了广泛青睐。而Java作为企业级开发的主流语言,如何与Elasticsearch无缝结合,发挥出最大效能呢?今天,就让我们
- 【AI深度学习基础】Pandas完全指南入门篇:数据处理的瑞士军刀 (含完整代码)
arbboter
人工智能人工智能深度学习pandas数据处理数据分析数据清洗数据分析效率提升
Pandas系列文章导航入门篇进阶篇终极篇一、引言在大数据与AI驱动的时代,数据预处理和分析是深度学习与机器学习的基石。Pandas作为Python生态中最强大的数据处理库,以其灵活的数据结构(如DataFrame和Series)和丰富的功能(数据清洗、转换、聚合等),成为数据科学家和工程师的核心工具。Pandas以Series(一维标签数组)和DataFrame(二维表格)为核心数据结构,提供高
- 对“预训练”的理解
衣衣困
深度学习神经网络自然语言处理
预训练有什么用传统的机器学习是偏数学的,对数据的量不做过多要求,而深度学习的项目通常是有大量的数据可供使用。在平常的任务或者项目中,我们可能并没有大量数据,只有少量数据,在这时我们就可以通过“借用”有大数据支持的模型的参数,作为基准,这样就能提高效率和准确率。因为他们神经网络的浅层是相似的,也就是说,在任务相似的情况下,可以用已有的模型即“预训练”好的模型参数实现小数据量的模型训练。预训练可以节省
- Java 大视界 -- Java 大数据机器学习模型的可解释性增强技术与应用(107)
青云交
大数据新视界Java大视界大数据java可解释性AISHAPLIME因果推理可视化交互
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- Java 大数据在智慧环保污染源监测与预警中的应用(104)
青云交
大数据新视界Java大视界java大数据智慧环保污染源监测实时预警FlinkLSTM
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- Java 大数据分布式文件系统的性能调优实战(101)
青云交
大数据新视界Java大视界java大数据Java大数据分布式文件系统性能调优HDFSImpala
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 深入剖析 Java 大数据实时 ETL 中的数据质量保障策略(97)
青云交
大数据新视界Java大视界Java大数据实时ETL数据质量保障数据清洗数据校验机器学习算法统计方法
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 绿色大数据:Java 技术在节能减排中的应用与实践(90)
青云交
大数据新视界Java大视界java大数据绿色大数据节能减排算法优化分布式计算资源管理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 大数据伦理与法律:Java 技术在合规中的作用与挑战(87)
青云交
大数据新视界Java大视界java大数据大数据伦理大数据法律数据加密访问控制应对策略
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 区块链赋能 Java 大数据:数据可信与价值流转(84)
青云交
大数据新视界Java大视界java大数据数据可信价值流转智能合约共识机制区块链
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 基于 Java 的大数据流处理容错机制与恢复策略(113)
青云交
大数据新视界Java大视界java大数据流处理容错机制CheckpointExactly-Once故障恢复
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 大智能:大数据+大模型+大算力_大算力大数据大模型
AI学习不迷路
大数据大模型人工智能语言模型ai产品经理算力
在近日举行的“2022中国人工智能产业年会”主论坛上,中国人工智能学会监事长、中国工程院院士蒋昌俊在报告中表示,人工智能的发展已经历了数十年的过程,大模型ChatGPT在今年春节前后突然出现,大家还没有来得及深度思考就已经“扑面而来”。蒋昌俊大智能的研究进展科学技术的研究约分为两大范式,一是牛顿力学奠定了理论计算的范式,二是开普勒开启数据的范式。之后经历了实验归纳、理论的逻辑推演,以及计算模拟、最
- 场景题:有40亿个QQ号如何去重?仅1GB内存
后端java面试
场景题:有40亿个QQ号如何去重?仅1GB内存场景题也有一些套路可以考虑,比如去重、判断给定数据是否存在1.大数据去重1.1现在有40亿个QQ号如何去重?仅1GB内存参考链接:https://juejin.cn/post/7396332696660131849介绍2种方法:Bitmap和布隆过滤器方法一:Bitmap首先介绍下什么是位图Bitmap位图是使用bit数组表示的,它只存储0或者1,因此
- 国产化替代 | 星环科技TDH替代IBM数仓,助力城商行构建湖仓一体平台
ibm
城商行构建湖仓一体平台|TDH替代IBM数仓IBM的数仓NetezzaEOL是2023年,数仓Netezza生命周期结束了。数仓产品停止提供支持和更新,不再为该产品提供修复漏洞或功能改进的服务。某城市商业银行在此背景下,启动数据仓库系统升级项目,将数据仓库从IBMNetezza迁移到星环科技大数据基础平台TDH,不但成功实现了数据仓库的国产化替代,还建设了新一代的湖仓一体平台,为银行业务发展提供新
- 大数据与网络安全讲座
黑客Jack
大数据web安全单例模式
点击文末小卡片,免费获取网络安全全套资料,资料在手,涨薪更快大数据的价值为大家公认。业界通常以4个“V”来概括大数据的基本特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。当你准备对大数据所带来的各种光鲜机遇大加利用的同时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代“潘多拉魔盒”中的魔鬼可能会随时出现。挑战一:
- FlinkCEP社区资源指南:学习与交流平台
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
FlinkCEP社区资源指南:学习与交流平台1.背景介绍ApacheFlink是一个开源的分布式大数据处理引擎,支持有状态计算和准确一次的流处理语义。Flink提供了强大的流处理能力,其中FlinkCEP(复杂事件处理)是一个非常重要的特性,允许从无边界的事件流中发现有趣的事件模式。CEP在许多领域都有广泛应用,例如:金融服务:检测欺诈行为、交易模式等物联网:监控传感器数据,检测异常情况业务流程监
- 深入探秘FlinkCDC:实时数据处理的新利器
lucky_syq
大数据大数据flink
一、写在前面在大数据领域持续蓬勃发展的当下,数据的实时处理与分析变得愈发关键。随着企业数字化转型进程的加速,业务系统产生的数据量呈爆发式增长,传统的数据处理方式已难以满足对数据时效性和分析实时性的严苛要求。在这样的大背景下,FlinkCDC应运而生,它作为一种强大的实时数据同步与处理工具,为大数据处理带来了全新的解决方案,在大数据生态体系中占据着举足轻重的地位。FlinkCDC,即FlinkCha
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- 遨游防爆智能终端“问诊”工业制造,开出数据采集“良方”
AORO_BEIDOU
制造
在数据驱动的时代,唯有采集足够规模的工业数据,方能支撑起基于工业大数据的深度分析与智能决策,从而驱动传统产业的蜕变与升级。但是,数据采集之路并非坦途,面临着设备协议多样、接口不一等挑战。技术难题求解,往往要在市场找良方。AOROM5-5G防爆智能终端遨游通讯防爆智能终端其独特之处在于全景前瞻架构的设计理念。在产品定义之初,便充分考虑了未来可能的数据采集需求,预留了丰富的接口,可根据企业的实际需求,
- Elasticsearch冷热分离与索引生命周期管理
Cloud_Tech
elasticsearch大数据数据分析数据库阿里云
本文介绍在Elasticsearch集群上,通过生命周期管理ILM(IndexLifecycleManagement)功能,实现冷热数据分离的实践流程。通过本实践,您既可以实现在保证集群读写性能的基础上,自动维护集群上的冷热数据,又能通过优化集群架构,降低企业生产成本。背景信息当今大数据时代,数据时刻在更新变化。尤其是随着时间的积累,存储在Elasticsearch中的数据会越来越多,当数据达到一
- 什么是预训练?
卡卡大怪兽
自然语言处理
一、介绍预训练模型诞生背景:对于某种特殊任务只存在少量的相关训练数据,以至于模型不能从中学习到有用的规律(标注资源稀缺,无大数据支持)举例:想对一批法律领域的文件进行关系抽取,就需要投入大量的精力(意味着时间和金钱的大量投入)在法律领域的文件中进行关系抽取的标注,然后将标注好的数据“喂”给模型进行训练。但是即使是标注了几百万条这样的数据(实际情况中,在一个领域内标注几百万条几乎不可能,因为成本非常
- 如何使用DeepSeek进行高效数据挖掘与分析
Small踢倒coffee_氕氘氚
笔记经验分享迭代器模式
##摘要随着大数据时代的到来,数据挖掘与分析技术在各行各业中扮演着越来越重要的角色。DeepSeek作为一种先进的数据挖掘工具,能够帮助用户从海量数据中提取有价值的信息。本文将详细介绍DeepSeek的功能、使用方法及其在实际应用中的优势,旨在为用户提供一份全面的使用指南。##关键词DeepSeek、数据挖掘、数据分析、机器学习、大数据##引言###背景在当今信息爆炸的时代,数据已成为企业决策的重
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- 2023年上海市浦东新区网络安全管理员决赛理论题样题
afei00123
网络安全&云安全考证狂魔web安全安全网络安全阿里云
目录一、判断题二、单选题三、多选题一、判断题1.等保1.0至等保2.0从信息系统拓展为网络和信息系统。正确(1)保护对象改变等保1.0保护的对象是信息系统,等保2.0增加为网络和信息系统,增加了云计算、大数据、工业控制系统、物联网、移动物联技术、网络基础设施等保护对象,实现了全方面的覆盖。其实不管保护对象如何变化,都需对要求部分进行全面的安全测评。(2)分类结构统一等保2.0实现基本、设计、测评要
- 基于springboot+vue在线小说阅读平台系统(源码+lw+部署文档+讲解等)
QQ3295391197
Java毕业设计项目springbootvue.js后端
前言博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌主要内容:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。精彩专栏推荐订
- 《DataWorks:为人工智能算法筑牢高质量数据根基》
人工智能深度学习
在当今数字化时代,人工智能(AI)技术的迅猛发展深刻地改变着各个行业的面貌。从智能推荐系统到医疗影像诊断,从自动驾驶到自然语言处理,AI正以前所未有的速度渗透到我们生活和工作的方方面面。而在这一系列AI应用的背后,高质量的训练数据是其能够发挥强大效能的关键所在。就如同巧妇难为无米之炊,没有优质的数据,再先进的AI算法也难以施展拳脚。阿里巴巴的DataWorks,作为一款强大的大数据开发治理平台,在
- 基于Generator生成器的分离式导出CSV
引言最近在工作中需要实现一个数据导出功能。由于之前都是使用现成的工具或库,换了一家公司后,发现需要从零开始构建这个功能。最初我计划实现一个异步导出功能,但上级认为过于复杂,建议采用同步方式。于是,我开始寻找一种高效的同步导出方案。在这个过程中,我发现了PHP中的生成器(Generator),这是一个非常强大的工具,特别适合处理大数据场景。本文将详细介绍生成器的概念、工作原理、优势以及如何利用生成器
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,