Saprk SQL基础知识

一.Spark SQL基本介绍

1.什么是Spark SQL

Spark SQL是Spark多种组件中其中一个,主要是用于处理大规模的[结构化数据]

Spark SQL的特点:

1).融合性:既可以使用SQL语句,也可以编写代码,同时支持两者混合使用.

2).统一的数据访问:Spark SQL用统一的API对接不同的数据源

3).Hive的兼容性:Spark SQL可以和Hive进行整合,合并后将执行引擎换成Spark,核心是基于hive的metastore来处理.

4).标准化连接:Spark SQL支持JDBC/ODBC连接

2.Spark SQL和Hive的异同点

相同点:

①都是分布式SQL计算引擎

②都可以处理大规模结构化数据

③都可以建立在Yarn集群上运行

不同点:

①Spark SQL的底层是RDD,Hive SQL的底层是MapReduce

②Spark SQL既可以编写SQL语句,又可以编写代码,而Hive SQL只可以编写SQL语句

③Spark SQL没有元数据管理服务,而Hive SQL有metastore管理元数据服务

④Spark SQL是基于内存运行的,Hive SQL是基于磁盘运行的

3.Spark SQL的数据结构对比

Saprk SQL基础知识_第1张图片

说明:

pandas的DataFrame:二维表 处理单机结构数据

Spark Core:处理任何的数据结构,处理大规模的分布式数据

Spark SQL:二维表,处理大规模的分布式结构数据 

 Saprk SQL基础知识_第2张图片

RDD:存储直接就是对象,比如在图中,存储就是一个Person的对象,但是里面是什么数据内容,不太清楚.

DataFrame:将Person中各个字段数据,进行结构化存储,形成一个DataFrame,可以直接看到数据

Dataset:将Person对象中数据都按照结构化的方式存储好,同时保留对象的类型,从而知道来源于一个Person对象

由于Python不支持泛型,所以无法使用Dataset类型,客户端仅支持DataFrame类型 

二.DataFrame详解

1.DataFrame基本介绍

 Saprk SQL基础知识_第3张图片

DataFrame表示的是一个二维的表,二维表,必然存在行,列等表结构描述信息.

表结构描述信息(元数据Schema) :StructType对象

字段:StructField对象,可以描述字段名称,字段数据类型,是否可以为空

行:Row对象

列:Column对象,包含字段名称和字段值

在一个StructType对象下,由多个StructField组成,构建成一个完整的元数据信息

2.DataFrame的构建方式

2.1 通过RDD得到一个DataFrame

from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
from pyspark.sql.types import StructType, IntegerType, StringType, StructField

os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    # 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('rdd_2_dataframe')\
        .master('local[*]')\
        .getOrCreate()

    # 通过SparkSession得到SparkContext
    sc = spark.sparkContext

    # 2- 数据输入
    # 2.1- 创建一个RDD
    init_rdd = sc.parallelize(["1,李白,20","2,安其拉,18"])

    # 2.2- 将RDD的数据结构转换成二维结构
    new_rdd = init_rdd.map(lambda line: (
            int(line.split(",")[0]),
            line.split(",")[1],
            int(line.split(",")[2])
        )
    )

    # 将RDD转成DataFrame:方式一
    # schema方式一
    schema = StructType()\
        .add('id',IntegerType(),False)\
        .add('name',StringType(),False)\
        .add('age',IntegerType(),False)


    # schema方式二
    schema = StructType([
        StructField('id',IntegerType(),False),
        StructField('name',StringType(),False),
        StructField('age',IntegerType(),False)
    ])

    # schema方式三
    schema = "id:int,name:string,age:int"

    # schema方式四
    schema = ["id","name","age"]

    init_df = spark.createDataFrame(
        data=new_rdd,
        schema=schema
    )

    # 将RDD转成DataFrame:方式二
    """
        toDF:中的schema既可以传List,也可以传字符串形式的schema信息
    """
    # init_df = new_rdd.toDF(schema=["id","name","age"])
    init_df = new_rdd.toDF(schema="id:int,name:string,age:int")

    # 3- 数据处理
    # 4- 数据输出
    init_df.show()
    init_df.printSchema()

    # 5- 释放资源
    sc.stop()
    spark.stop()

场景:RDD可以存储任意结构的数据;而DataFrame只能处理二维表数据。在使用Spark处理数据的初期,可能输入进来的数据是半结构化或者是非结构化的数据,那么我可以先通过RDD对数据进行ETL处理成结构化数据,再使用开发效率高的SparkSQL来对后续数据进行处理分析。

2.2 内部初始化数据得到DataFrame

from pyspark import SparkConf, SparkContext
import os

# 绑定指定的Python解释器
from pyspark.sql import SparkSession

os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("内部初始化数据得到DataFrame。类似SparkCore中的parallelize")

    # 1- 创建SparkSession顶级对象
    spark = SparkSession.builder\
        .appName('inner_create_dataframe')\
        .master('local[*]')\
        .getOrCreate()

    # 2- 数据输入
    """
        通过createDataFrame创建DataFrame,schema数据类型可以是:DataType、字符串、List
            字符串:格式要求
                格式一 字段1 字段类型,字段2 字段类型
                格式二(推荐) 字段1:字段类型,字段2:字段类型
                
            List:格式要求
                ["字段1","字段2"]
    """
    # 内部初始化数据得到DataFrame
    init_df = spark.createDataFrame(
        data=[(1,'张三',18),(2,'李四',30)],
        schema="id:int,name:string,age:int"
    )

    # init_df = spark.createDataFrame(
    #     data=[(1, '张三', 18), (2, '李四', 30)],
    #     schema="id int,name string,age int"
    # )

    # init_df = spark.createDataFrame(
    #     data=[(1, '张三', 18), (2, '李四', 30)],
    #     schema=["id","name","age"]
    # )

    # init_df = spark.createDataFrame(
    #     data=[(1, '张三', 18), (2, '李四', 30)],
    #     schema=["id:int", "name:string", "age:int"]
    # )

    # 3- 数据处理
    # 4- 数据输出
    # 输出dataframe的数据内容
    init_df.show()

    # 输出dataframe的schema信息
    init_df.printSchema()

    # 5- 释放资源
    spark.stop()

场景:一般用在开发和测试中,因为只能处理少量的数据

Schema总结

通过createDataFrame创建DataFrame,schema数据类型可以是:DataType,字符串,List

1:字符串

格式一 字段1 字段类型,字段2 字段类型

格式二 字段1:字段类型,字段2:字段类型

2:List

["字段1","字段2"]

3:DataType

格式一 schema = StructType().add('id',IntegerType(),False)

.add('id',IntegerType(),False).add('id',IntegerType(),False)

格式二 schema = StructType([StructField('id',IntegerType,False),

StructField('id',IntegerType,False),

StructField('id',IntegerType,False)])

 2.3 读取外部文件

复杂API

统一API格式:

sparksession.read

.format('text|csv|json|parquet|orc|avro|jdbc|...')

.option('k','v')

.schema(StructType | String)

.load('加载数据路径') #读取外部文件的路径,支持HDFS也支持本地

简写API

 请注意: 以上所有的外部读取方式,都有简单的写法。spark内置了一些常用的读取方案的简写

格式:spark.read.读取方式()

例如:

df = spark.read.csv(

path ='file:///export/data/_03_spark_sql/data/stu.txt',header=True,sep=' ',inferSchema=True,encoding='utf-8')

2.3.1 Text方式读取

 

from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("text方式读取文件")

    # 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('text_demo')\
        .master('local[*]')\
        .getOrCreate()

    # 2- 数据输入
    """
        load:支持读取HDFS文件系统和本地文件系统
            HDFS文件系统:hdfs://node1:8020/文件路径
            本地文件系统:file:///文件路径
            
        text方式读取文件总结:
            1- 不管文件中内容是什么样的,text会将所有内容全部放到一个列中处理
            2- 默认生成的列名叫value,数据类型string
            3- 我们只能够在schema中修改字段value的名称,其他任何内容不能修改
    """
    init_df = spark.read\
        .format('text')\
        .schema("my_field string")\
        .load('file:///export/data/gz16_pyspark/02_spark_sql/data/stu.txt')

    # 3- 数据处理
    # 4- 数据输出
    init_df.show()
    init_df.printSchema()

    # 5- 释放资源
    spark.stop()
 

text方式读取文件总结:

1-不管文件中内容是什么样的,text会将所有内容全部放到一个列中处理

2-默认生成的列名叫value,数据类型string

3-我们只能够在schema中修改字段value的名称,其他任何内容不能修改 

2.3.2 CSV方式读取

from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("csv方式读取文件")

    # 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('csv_demo')\
        .master('local[*]')\
        .getOrCreate()

    # 2- 数据输入
    """
        csv格式读取外部文件总结:
            1- 复杂API和简写API都必须掌握
            2- 相关参数作用说明:
                2.1- path:指定读取的文件路径。支持HDFS和本地文件路径
                2.2- schema:手动指定元数据信息
                2.3- sep:指定字段间的分隔符
                2.4- encoding:指定文件的编码方式
                2.5- header:指定文件中的第一行是否是字段名称
                2.6- inferSchema:根据数据内容自动推断数据类型。但是,推断结果可能不精确
    """
    # 复杂API写法
    init_df = spark.read\
        .format('csv')\
        .schema("id int,name string,address string,sex string,age int")\
        .option("sep"," ")\
        .option("encoding","UTF-8")\
        .option("header","True")\
        .load('file:///export/data/gz16_pyspark/02_spark_sql/data/stu.txt')

    # 简写API写法
    # init_df = spark.read.csv(
    #     path='file:///export/data/gz16_pyspark/02_spark_sql/data/stu.txt',
    #     schema="id int,name string,address string,sex string,age int",
    #     sep=' ',
    #     encoding='UTF-8',
    #     header="True"
    # )

    # init_df = spark.read.csv(
    #     path='file:///export/data/gz16_pyspark/02_spark_sql/data/stu.txt',
    #     sep=' ',
    #     encoding='UTF-8',
    #     header="True",
    #     inferSchema=True
    # )

    # 3- 数据处理
    # 4- 数据输出
    init_df.show()
    init_df.printSchema()

    # 5- 释放资源
    spark.stop()

csv格式读取外部文件总结:

1-相关参数说明:

1.1 path:文件路径,HDFS和本地

1.2 schema:手动指定元数据信息

1.3 sep:指定字段间的分隔符

1.4 encoding:指定文件的编码方式

1.5 header:指定文件中的第一行是否是字段名称

1.6 inferSchema:根据数据内容自动推断数据类型,但是推断结果可能不精确 

 2.3.3 JSON方式读取

json的数据内容

{'id': 1,'name': '张三','age': 20}
{'id': 2,'name': '李四','age': 23,'address': '北京'}
{'id': 3,'name': '王五','age': 25}
{'id': 4,'name': '赵六','age': 29}

代码实现:

from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    # 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('json_demo')\
        .master('local[*]')\
        .getOrCreate()

    # 2- 数据输入
    """
        json读取数据总结:
            1- 需要手动指定schema信息。如果手动指定的时候,字段名称与json中的key名称不一致,会解析不成功,以null值填充
            2- csv/json中schema的结构,如果是字符串类型,那么字段名称和字段数据类型间,只能以空格分隔
    """
    # init_df = spark.read.json(
    #     path='file:///export/data/gz16_pyspark/02_spark_sql/data/data.txt',
    #     schema="id2 int,name string,age int,address string",
    #     encoding='UTF-8'
    # )

    # init_df = spark.read.json(
    #     path='file:///export/data/gz16_pyspark/02_spark_sql/data/data.txt',
    #     schema="id:int,name:string,age:int,address:string",
    #     encoding='UTF-8'
    # )

    init_df = spark.read.json(
        path='file:///export/data/gz16_pyspark/02_spark_sql/data/data.txt',
        schema="id int,name string,age int,address string",
        encoding='UTF-8'
    )

    # 3- 数据输出
    init_df.show()
    init_df.printSchema()


    # 4- 释放资源
    spark.stop()

 json读取数据总结:

1-需要手动指定schema信息,如果手动指定的时候,字段名称与json中的key名称不一致,会解析不成功,以null值填充

2-csv/json中schema的结构,如果是字符串类型,那么字段名称和字段数据类型间,只能以空格分隔

3.DataFrame的相关API

操作DataFrame一般有两种操作方案:一种为DSL方式,另一种为SQL方式

 

SQL方式: 通过编写SQL语句完成统计分析操作
DSL方式: 特定领域语言,使用DataFrame特有的API完成计算操作,也就是代码形式

从使用角度来说: SQL可能更加的方便一些,当适应了DSL写法后,你会发现DSL要比SQL更好用
从Spark角度来说: 更推荐使用DSL方案,此种方案更加利于Spark底层的优化处理

3.1 SQL相关的API

创建一个视图/表

 

df.createTempView('视图名称'): 创建一个临时的视图(表名)
df.createOrReplaceTempView('视图名称'): 创建一个临时的视图(表名),如果视图存在,直接替换
临时视图,仅能在当前这个Spark Session的会话中使用


df.createGlobalTempView('视图名称'): 创建一个全局视图,运行在一个Spark应用中多个spark会话中都可以使用。在使用的时候必须通过 global_temp.视图名称 方式才可以加载到。较少使用

执行SQL语句

spark.sql('书写SQL') 

3.2 DSL相关的API

show():用于展示DF中数据,默认仅展示前20行

参数1:设置默认展示多少行,默认为20

参数2:是否为阶段列,默认仅展示前20个字符数据,如果过长,不展示

printSchema():用于打印当前这个DF的表结构信息

select():类似于SQL中select, SQL中select后面可以写什么, 这样同样也一样

  • filter()和 where():用于对数据进行过滤操作, 一般在spark SQL中主要使用where

  • groupBy():用于执行分组操作

  • orderBy():用于执行排序操作

DSL主要支持以下几种传递的方式:  str | Column对象 | 列表
    str格式:  '字段'
    Column对象:  
        DataFrame含有的字段  df['字段']
        执行过程新产生:  F.col('字段')
    列表: 
        ['字段1','字段2'...]
        [df['字段1'],df['字段2']]

 为了能够支持在编写Spark SQL的DSL时候,在DSL中使用SQL函数,专门提供一个SQL的函数库。直接加载使用即可

导入这个函数库: import pyspark.sql.functions as F
通过F调用对应的函数即可。SparkSQL中所支持的函数,都可以通过以下地址查询到: 
https://spark.apache.org/docs/3.1.2/api/sql/index.html

你可能感兴趣的:(sql,数据库)