ROS-urdf集成gazebo

文章目录

  • 一、URDF与Gazebo基本集成流程
  • 二、URDF集成Gazebo相关设置
  • 三、URDF集成Gazebo实操
  • 四、Gazebo仿真环境搭建

一、URDF与Gazebo基本集成流程

1.创建功能包
创建新功能包,导入依赖包: urdf、xacro、gazebo_ros、gazebo_ros_control、gazebo_plugins
2.编写URDF文件



<robot name="mycar">
    <link name="base_link">
        <visual>
            <geometry>
                <box size="0.5 0.2 0.1" />
            geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="yellow">
                <color rgba="0.5 0.3 0.0 1" />
            material>
        visual>
        <collision>
            <geometry>
                <box size="0.5 0.2 0.1" />
            geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="6" />
            <inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1" />
        inertial>
    link>
    <gazebo reference="base_link">
        <material>Gazebo/Blackmaterial>
    gazebo>

robot>

注意, 当 URDF 需要与 Gazebo 集成时,和 Rviz 有明显区别:

1.必须使用 collision 标签,因为既然是仿真环境,那么必然涉及到碰撞检测,collision 提供碰撞检测的依据。

2.必须使用 inertial 标签,此标签标注了当前机器人某个刚体部分的惯性矩阵,用于一些力学相关的仿真计算。

3.颜色设置,也需要重新使用 gazebo 标签标注,因为之前的颜色设置为了方便调试包含透明度,仿真环境下没有此选项。

3.启动Gazebo并显示模型
launch 文件实现:

<launch>

    
    <param name="robot_description" textfile="$(find demo02_urdf_gazebo)/urdf/urdf01_helloworld.urdf" />

    
    <include file="$(find gazebo_ros)/launch/empty_world.launch" />

    
    <node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description"  />
launch>

ROS-urdf集成gazebo_第1张图片

二、URDF集成Gazebo相关设置

1.collision
如果机器人link是标准的几何体形状,和link的 visual 属性设置一致即可。

2.inertial
惯性矩阵的设置需要结合link的质量与外形参数动态生成,标准的球体、圆柱与立方体的惯性矩阵公式如下(已经封装为 xacro 实现):

球体惯性矩阵


    <xacro:macro name="sphere_inertial_matrix" params="m r">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${2*m*r*r/5}" ixy="0" ixz="0"
                iyy="${2*m*r*r/5}" iyz="0" 
                izz="${2*m*r*r/5}" />
        inertial>
    xacro:macro>

圆柱惯性矩阵

<xacro:macro name="cylinder_inertial_matrix" params="m r h">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
                iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
                izz="${m*r*r/2}" /> 
        inertial>
    xacro:macro>

立方体惯性矩阵

 <xacro:macro name="Box_inertial_matrix" params="m l w h">
       <inertial>
               <mass value="${m}" />
               <inertia ixx="${m*(h*h + l*l)/12}" ixy = "0" ixz = "0"
                   iyy="${m*(w*w + l*l)/12}" iyz= "0"
                   izz="${m*(w*w + h*h)/12}" />
       inertial>
   xacro:macro>

需要注意的是,原则上,除了 base_footprint 外,机器人的每个刚体部分都需要设置惯性矩阵,且惯性矩阵必须经计算得出,如果随意定义刚体部分的惯性矩阵,那么可能会导致机器人在 Gazebo 中出现抖动,移动等现象。

3.颜色设置
在 gazebo 中显示 link 的颜色,必须要使用指定的标签:

<gazebo reference="link节点名称">
     <material>Gazebo/Bluematerial>
gazebo>
  • material 标签中,设置的值区分大小写,颜色可以设置为 Red Blue Green Black …
  • 该标签与link标签同级,不要写在link标签中。

三、URDF集成Gazebo实操

1.编写封装惯性矩阵算法的 xacro 文件

<robot name="base" xmlns:xacro="http://wiki.ros.org/xacro">
    
    <xacro:macro name="sphere_inertial_matrix" params="m r">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${2*m*r*r/5}" ixy="0" ixz="0"
                iyy="${2*m*r*r/5}" iyz="0" 
                izz="${2*m*r*r/5}" />
        inertial>
    xacro:macro>

    <xacro:macro name="cylinder_inertial_matrix" params="m r h">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
                iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
                izz="${m*r*r/2}" /> 
        inertial>
    xacro:macro>

    <xacro:macro name="Box_inertial_matrix" params="m l w h">
       <inertial>
               <mass value="${m}" />
               <inertia ixx="${m*(h*h + l*l)/12}" ixy = "0" ixz = "0"
                   iyy="${m*(w*w + l*l)/12}" iyz= "0"
                   izz="${m*(w*w + h*h)/12}" />
       inertial>
   xacro:macro>
robot>

2.复制相关 xacro 文件,并设置 collision inertial 以及 color 等参数
A.底盘 Xacro 文件



<robot name="my_base" xmlns:xacro="http://www.ros.org/wiki/xacro">
    
    
    <xacro:property name="PI" value="3.1415926"/>
    
    <material name="black">
        <color rgba="0.0 0.0 0.0 1.0" />
    material>
    
    <xacro:property name="base_footprint_radius" value="0.001" /> 
    <xacro:property name="base_link_radius" value="0.1" /> 
    <xacro:property name="base_link_length" value="0.08" /> 
    <xacro:property name="earth_space" value="0.015" /> 
    <xacro:property name="base_link_m" value="0.5" /> 

    
    <link name="base_footprint">
      <visual>
        <geometry>
          <sphere radius="${base_footprint_radius}" />
        geometry>
      visual>
    link>

    <link name="base_link">
      <visual>
        <geometry>
          <cylinder radius="${base_link_radius}" length="${base_link_length}" />
        geometry>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <material name="yellow">
          <color rgba="0.5 0.3 0.0 0.5" />
        material>
      visual>
      <collision>
        <geometry>
          <cylinder radius="${base_link_radius}" length="${base_link_length}" />
        geometry>
        <origin xyz="0 0 0" rpy="0 0 0" />
      collision>
      <xacro:cylinder_inertial_matrix m="${base_link_m}" r="${base_link_radius}" h="${base_link_length}" />

    link>


    <joint name="base_link2base_footprint" type="fixed">
      <parent link="base_footprint" />
      <child link="base_link" />
      <origin xyz="0 0 ${earth_space + base_link_length / 2 }" />
    joint>
    <gazebo reference="base_link">
        <material>Gazebo/Yellowmaterial>
    gazebo>

    
    
    <xacro:property name="wheel_radius" value="0.0325" />
    <xacro:property name="wheel_length" value="0.015" />
    <xacro:property name="wheel_m" value="0.05" /> 

    
    <xacro:macro name="add_wheels" params="name flag">
      <link name="${name}_wheel">
        <visual>
          <geometry>
            <cylinder radius="${wheel_radius}" length="${wheel_length}" />
          geometry>
          <origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
          <material name="black" />
        visual>
        <collision>
          <geometry>
            <cylinder radius="${wheel_radius}" length="${wheel_length}" />
          geometry>
          <origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
        collision>
        <xacro:cylinder_inertial_matrix m="${wheel_m}" r="${wheel_radius}" h="${wheel_length}" />

      link>

      <joint name="${name}_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="${name}_wheel" />
        <origin xyz="0 ${flag * base_link_radius} ${-(earth_space + base_link_length / 2 - wheel_radius) }" />
        <axis xyz="0 1 0" />
      joint>

      <gazebo reference="${name}_wheel">
        <material>Gazebo/Redmaterial>
      gazebo>

    xacro:macro>
    <xacro:add_wheels name="left" flag="1" />
    <xacro:add_wheels name="right" flag="-1" />
    
    
    <xacro:property name="support_wheel_radius" value="0.0075" /> 
    <xacro:property name="support_wheel_m" value="0.03" /> 

    
    <xacro:macro name="add_support_wheel" params="name flag" >
      <link name="${name}_wheel">
        <visual>
            <geometry>
                <sphere radius="${support_wheel_radius}" />
            geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black" />
        visual>
        <collision>
            <geometry>
                <sphere radius="${support_wheel_radius}" />
            geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
        collision>
        <xacro:sphere_inertial_matrix m="${support_wheel_m}" r="${support_wheel_radius}" />
      link>

      <joint name="${name}_wheel2base_link" type="continuous">
          <parent link="base_link" />
          <child link="${name}_wheel" />
          <origin xyz="${flag * (base_link_radius - support_wheel_radius)} 0 ${-(base_link_length / 2 + earth_space / 2)}" />
          <axis xyz="1 1 1" />
      joint>
      <gazebo reference="${name}_wheel">
        <material>Gazebo/Redmaterial>
      gazebo>
    xacro:macro>

    <xacro:add_support_wheel name="front" flag="1" />
    <xacro:add_support_wheel name="back" flag="-1" />


robot>

注意: 如果机器人模型在 Gazebo 中产生了抖动,滑动,缓慢位移 … 诸如此类情况,请查看

  • 惯性矩阵是否设置了,且设置是否正确合理
  • 车轮翻转需要依赖于 PI 值,如果 PI 值精度偏低,也可能导致上述情况产生

B.摄像头 Xacro 文件


<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro">
    
    <xacro:property name="camera_length" value="0.01" /> 
    <xacro:property name="camera_width" value="0.025" /> 
    <xacro:property name="camera_height" value="0.025" /> 
    <xacro:property name="camera_x" value="0.08" /> 
    <xacro:property name="camera_y" value="0.0" /> 
    <xacro:property name="camera_z" value="${base_link_length / 2 + camera_height / 2}" /> 

    <xacro:property name="camera_m" value="0.01" /> 

    
    <link name="camera">
        <visual>
            <geometry>
                <box size="${camera_length} ${camera_width} ${camera_height}" />
            geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="black" />
        visual>
        <collision>
            <geometry>
                <box size="${camera_length} ${camera_width} ${camera_height}" />
            geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        collision>
        <xacro:Box_inertial_matrix m="${camera_m}" l="${camera_length}" w="${camera_width}" h="${camera_height}" />
    link>

    <joint name="camera2base_link" type="fixed">
        <parent link="base_link" />
        <child link="camera" />
        <origin xyz="${camera_x} ${camera_y} ${camera_z}" />
    joint>
    <gazebo reference="camera">
        <material>Gazebo/Bluematerial>
    gazebo>
robot>

C.雷达 Xacro 文件


<robot name="my_laser" xmlns:xacro="http://wiki.ros.org/xacro">

    
    <xacro:property name="support_length" value="0.15" /> 
    <xacro:property name="support_radius" value="0.01" /> 
    <xacro:property name="support_x" value="0.0" /> 
    <xacro:property name="support_y" value="0.0" /> 
    <xacro:property name="support_z" value="${base_link_length / 2 + support_length / 2}" /> 

    <xacro:property name="support_m" value="0.02" /> 

    <link name="support">
        <visual>
            <geometry>
                <cylinder radius="${support_radius}" length="${support_length}" />
            geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="red">
                <color rgba="0.8 0.2 0.0 0.8" />
            material>
        visual>

        <collision>
            <geometry>
                <cylinder radius="${support_radius}" length="${support_length}" />
            geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        collision>

        <xacro:cylinder_inertial_matrix m="${support_m}" r="${support_radius}" h="${support_length}" />

    link>

    <joint name="support2base_link" type="fixed">
        <parent link="base_link" />
        <child link="support" />
        <origin xyz="${support_x} ${support_y} ${support_z}" />
    joint>

    <gazebo reference="support">
        <material>Gazebo/Whitematerial>
    gazebo>

    
    <xacro:property name="laser_length" value="0.05" /> 
    <xacro:property name="laser_radius" value="0.03" /> 
    <xacro:property name="laser_x" value="0.0" /> 
    <xacro:property name="laser_y" value="0.0" /> 
    <xacro:property name="laser_z" value="${support_length / 2 + laser_length / 2}" /> 

    <xacro:property name="laser_m" value="0.1" /> 

    
    <link name="laser">
        <visual>
            <geometry>
                <cylinder radius="${laser_radius}" length="${laser_length}" />
            geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="black" />
        visual>
        <collision>
            <geometry>
                <cylinder radius="${laser_radius}" length="${laser_length}" />
            geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        collision>
        <xacro:cylinder_inertial_matrix m="${laser_m}" r="${laser_radius}" h="${laser_length}" />
    link>

    <joint name="laser2support" type="fixed">
        <parent link="support" />
        <child link="laser" />
        <origin xyz="${laser_x} ${laser_y} ${laser_z}" />
    joint>
    <gazebo reference="laser">
        <material>Gazebo/Blackmaterial>
    gazebo>
robot>

D.组合底盘、摄像头与雷达的 Xacro 文件

3.在 gazebo 中执行
launch 文件:

<launch>
    
    <param name="robot_description" command="$(find xacro)/xacro $(find demo02_urdf_gazebo)/urdf/xacro/my_base_camera_laser.urdf.xacro" />
    
    <include file="$(find gazebo_ros)/launch/empty_world.launch" />

    
    <node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description"  />
launch>

ROS-urdf集成gazebo_第2张图片

四、Gazebo仿真环境搭建

Gazebo 中创建仿真实现方式有两种:

  • 方式1: 直接添加内置组件创建仿真环境

  • 方式2: 手动绘制仿真环境(更为灵活)

也还可以直接下载使用官方或第三方提高的仿真环境插件。

1.添加内置组件创建仿真环境
1.1启动 Gazebo 并添加组件
ROS-urdf集成gazebo_第3张图片
1.2保存仿真环境
添加完毕后,选择 file —> Save World as 选择保存路径(功能包下: worlds 目录),文件名自定义,后缀名设置为 .world
ROS-urdf集成gazebo_第4张图片
1.3 启动

<launch>

    
    <param name="robot_description" command="$(find xacro)/xacro $(find demo02_urdf_gazebo)/urdf/xacro/my_base_camera_laser.urdf.xacro" />
    
    <include file="$(find gazebo_ros)/launch/empty_world.launch">
        <arg name="world_name" value="$(find demo02_urdf_gazebo)/worlds/hello.world" />
    include>

    
    <node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description"  />
launch>

2.自定义仿真环境
2.1 启动 gazebo 打开构建面板,绘制仿真环境
ROS-urdf集成gazebo_第5张图片
ROS-urdf集成gazebo_第6张图片
2.2 保存构建的环境
点击: 左上角 file —> Save (保存路径功能包下的: models)

然后 file —> Exit Building Editor

2.3 保存为 world 文件
可以像方式1一样再添加一些插件,然后保存为 world 文件(保存路径功能包下的: worlds)
ROS-urdf集成gazebo_第7张图片
2.4 启动
ROS-urdf集成gazebo_第8张图片

3.使用官方提供的插件
当前 Gazebo 提供的仿真道具有限,还可以下载官方支持,可以提供更为丰富的仿真实现,具体实现如下:

3.1 下载官方模型库

git clone https://github.com/osrf/gazebo_models

之前是:hg clone https://bitbucket.org/osrf/gazebo_models但是已经不可用

注意: 此过程可能比较耗时

3.2 将模型库复制进 gazebo
将得到的gazebo_models文件夹内容复制到 /usr/share/gazebo-*/models

3.3 应用
重启 Gazebo,选择左侧菜单栏的 insert 可以选择并插入相关道具了

参考:
[1]Autolabor-ROS机器人入门课程《ROS理论与实践》季基础教程
[2]【Autolabor初级教程】ROS机器人入门
[3]胡春旭.ROS机器人开发实践[M].机械工业出版社,2018.

你可能感兴趣的:(ROS,机器人)