- SQL-触发器(trigger)的详解以及代码演示
m0_74823827
面试学习路线阿里巴巴sql数据库服务器
一、触发器的概念触发器是一种特殊的存储过程,但是触发器不存在输入和输出参数,所以不能被显式的去调用,而是与特定的表相关联,当表中的数据发生变化时,触发器被激活并执行其定义的SQL代码。触发器可以是行级触发器(针对每一行数据变化)或语句级触发器(针对整个SQL语句的变化),行级触发器允许对每一行单独处理,而语句级触发器则在整个操作完成后执行一次。触发器的功能强化约束:触发器能够实现比CHECK语句更
- 华山论剑,大模型(deepseek qwq gemini)辩论人生意义
Lifeng66666666
语言模型语言模型人工智能
借助DeepDiscussion程序,通过让大模型(deepseekqwqgemini)讨论“人生意义是什么”这一挑战问题,我们得以客观观察目前这几种大模型的价值观,能力,不足。部分讨论过程:问题:人生的意义是什么?deepseek/deepseek-r1:free初始方案:针对“人生的意义是什么”这一终极问题,我的解决方案分为以下五个层次,融合东西方哲学智慧与实践心理学,并提供具体行动方向:一、
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习deepseek机器学习算法
大语言模型微调和大语言模型应用的区别?关键要点微调大型语言模型(LLM)是调整预训练模型以适应特定任务或领域的过程,研究表明这能显著提升性能。大型语言模型应用是指将LLM用于实际问题解决或任务执行,如聊天机器人或文本生成。微调和应用的不同在于:微调是准备阶段,应用是最终使用;使用微调模型通常在特定领域表现更好,而预训练模型更适合通用任务。什么是微调大型语言模型?微调大型语言模型是指取一个已经预训练
- 计算机视觉总结
Trank-Lw
计算机视觉深度学习人工智能
以下是针对上述问题的详细解答,并结合代码示例进行说明:1.改进YOLOv5人脸检测模块,复杂光照场景准确率从98.2%提升至99.5%优化具体过程:光照补偿:在数据预处理阶段,采用自适应光照补偿算法,对图像进行实时增强,以减少光照变化对人脸检测的影响。数据增强:在训练数据中增加复杂光照场景下的样本,如强光、弱光、背光等,通过数据增强提高模型对不同光照条件的适应性。模型调整:对YOLOv5模型的网络
- VSCode python 遇到的问题:vscode can't open file '': [Errno 2] No such file or dire...
weixin_33984032
python开发工具json
代码很简单,就两行:importpandasaspdimportnetCDF4asncdataset=nc.Dataset('20150101.nc')环境:在VSCode中左下角把原环境的Python3.6.532-bit切换为Anaconda中的Python3.6.564-bit('base':conda)过程中有两种错误:(忘记截图了,都是历史记录中的google网页搜索栏找到的搜索记录)1
- 深度学习 Deep Learning 第8章 深度学习优化
odoo中国
AI编程人工智能深度学习人工智能优化
深度学习第8章深度学习的优化章节概述本章深入探讨了深度学习中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是深度学习的核心环节,直接关系到模型的训练效率和最终性能。本章首先介绍了优化在深度学习中的特殊性,然后详细讨论了多种优化算法,包括随机梯度下降(SGD)、动量法、Nesterov动量法、AdaGrad、RMSProp和Adam等。此外,还探讨了参数初始化策略、自适应学习率方法以及二阶优
- MySQL 中 int (1) 和 int (10) 的区别详解
阿贾克斯的黎明
游戏开发mysql数据库
目录MySQL中int(1)和int(10)的区别详解在MySQL数据库的使用过程中,我们创建数据表时经常会用到整数类型,比如int。而细心的开发者可能会注意到,int后面可以跟一个数字,像int(1)和int(10),这两者到底有什么区别呢?今天我们就来深入探讨一下。在MySQL中,int类型后面括号里的数字M,代表的是显示宽度,最大取值为255。需要明确的是,这个显示宽度和该类型可以存储的范围
- rabbitmq笔记
java
消息可靠性rabbitmq向消费者投递消息后,有可能会丢失,有可能会重复投递。比如:投递过程网络故障消费者收到消息后宕机消费者接收到消息后处理不当导致异常...rabbitmq需要做的事:机制消费者确认机制消费者处理成功后需要通知发幂等性幂等性指同一个业务,执行一次或多次对业务状态的影响是一致的例如唯一消息id业务状态判断但是数据的更新往往不是幂等的,所以需要确保幂等性确保幂等性方法有两种方案唯一
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 【网络】数据流(Data Workflow)Routes(路由)、Controllers(控制器)、Models(模型) 和 Middleware(中间件)
一袋米扛几楼98
网络工程/安全中间件
在图片中,数据流(DataWorkflow)描述了应用程序中数据的流动过程,涉及Routes(路由)、Controllers(控制器)、Models(模型)和Middleware(中间件)。作为初学者,理解这些组件及其联系是掌握Web应用程序开发的关键。以下是对每个技术点的详细解释,以及它们如何相互关联的分析。1.Routes(路由)定义:路由定义了应用程序的URL端点(Endpoints)以及服
- 从“一壶浊酒”到“一份报告”,看永洪科技助力郎酒集团的数字化升级之旅
永洪科技
大数据数据分析数据可视化BI
白酒在社交、庆祝和宴请活动中扮演着重要的角色,它与人们的生活密切相关。白酒的制作过程、酿造技艺、酒文化习俗等方面都体现了当地的历史、传统和价值观。同时它也是一种文化的载体,承载着人们对于生活、友谊、团聚的情感和期待。人们通过分享白酒来加强彼此之间的联系和沟通,它成为了社交场合中的重要元素。白酒还通过艺术、文学、电影等形式在文化领域中得到了表达和展示。郎酒庄园作为我国传统的白酒行业,郎酒在国内市场占
- Win11网络连接不可用?这些解决方案助你快速恢复网络畅通
nntxthml
网络智能路由器windows
Win11网络连接不可用?这些解决方案助你快速恢复网络畅通在使用Windows11系统的过程中,网络连接不可用的问题时常困扰着我们。无论是无法访问互联网、共享文件还是使用网络应用程序,这一问题都会对我们的工作和生活造成诸多不便。网络连接不可用的情况可能由多种原因导致,例如网络连接未开启、硬件设备故障等。为了帮助大家快速解决这一问题,本文将详细介绍几种实用的解决方案。一、检查并启用网络连接在Wind
- 数据库原理实验报告:Powerdesigner建模E-R模型并转换表
不吃~香菜
各类实验报告汇总需要私数据库实验报告PowerdesignerE-R模型建模
注:此实验并不完整,仅供参考,如需完整版请私我留言一、实验目的:二、实验工具:三、实验要求:四、实验过程:图文并茂,每一步都包含详细图片,总共11页word!往期回顾:计算机接口实验报告:8254定时/计数器应用实验-CSDN博客计算机接口实验报告:D/A转换实验-CSDN博客计算机接口实验报告:LED显示实验-CSDN博客数据库原理实验报告:Powerdesigner建模E-R模型并转换表一、实
- 【QT入门】qmake和cmake的简单区别
不吃~香菜
QT入门qt开发语言学习qmakecmake
声明:该专栏为本人学习Qt知识点时候的笔记汇总,希望能给初学的朋友们一点帮助(加油!)往期回顾:【QT入门】Windows平台下QT的编译过程-CSDN博客【QT入门】VS2019+QT的开发环境配置-CSDN博客【QT入门】VS2019和QTCreator如何添加第三方模块-CSDN博客【QT入门】qmake和cmake的简单区别qmake和cmake是两种常用的构建工具,用于自动化构建C++项
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- 【块浮点(BFP)技术:原理、设计及应用】
youngerwang
移动5G测试验证之禅道matlab信息与通信基带工程
文章目录块浮点(BFP)技术:原理、设计及应用摘要关键词:块浮点(BFP)技术;量化;数据压缩;自适应调整;联合编码;硬件实现;Matlab一、引言二、BFP原理(一)基本概念(二)量化过程(三)逆过程(解量化)三、BFP设计(一)块大小选择(二)缩放因子编码(三)量化比特宽度选择四、BFP设计难点解析(一)数据动态特性与块大小适配(二)缩放因子编码的复杂度与效率平衡(三)量化精度与压缩比的最优平
- 群体智能优化算法-爱情进化算法 (Love Evolution Algorithm, LEA,含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要爱情进化算法(LEA)是一种基于心理学刺激-价值-角色理论(Stimulus-Value-RoleTheory)所提出的新型元启发式算法。该算法将“恋爱中的人”抽象为种群个体,通过对个体“幸福度(Happiness)”的定义和动态更新,模拟了从“相遇->价值交流->角色平衡”三个阶段不断逼近全局最优解的过程。LEA在高维连续优化与工程应用等场景下可实现对搜索空间的充分探索与精细开发。本文结合算
- 灰狼优化算法(Grey Wolf Optimization, GWO)及其 Python 代码
追蜻蜓追累了
算法pythongithubpycharmjupytermatlabnumpy
灰狼优化算法(GreyWolfOptimization,GWO)是一种基于灰狼社会行为觅食过程而设计的优化算法。其基本原理是模拟灰狼群体中个体的协作和竞争行为,以迭代更新的方式寻找最优解。灰狼优化算法涉及三种灰狼的角色:alpha(α)、beta(β)和delta(δ),它们分别代表群体中的优势个体。算法包括初始化灰狼位置、计算适应度值、更新灰狼位置等步骤。以下是一个简单的Python示例代码,实
- 读书笔记五 ---大数据之路--数仓分层
qq_38215991
bigdata大数据
数据分层在流式数据模型中,数据模型整体上分为五层。ODS层跟离线系统的定义一样,ODS层属于操作数据层,是直接从业务系统采集过来的最原始数据(进行了数据清洗),包含了所有业务的变更过程,数据粒度也是最细的。在这一层,实时和离线在源头上是统一的,这样的好处是用同一份数据加工出来的指标,口径基本是统一的,可以更方便进行实时和离线问数据比对。例如:原始的订单变更记录数据、服务器引擎的访同日志。(原始数据
- 停止过度提示:为什么简短的 AI 提示比长prompt更胜一筹
大模型之路
prompt人工智能prompt提示词
当下如何与AI高效互动成为众多用户关注的焦点,而提示词(prompt)的运用则是其中的关键。提示词作为与AI沟通的桥梁,其长度和内容的详略在很大程度上影响着AI的回应效果以及用户体验。近年来,“过度提示”现象逐渐引发热议,与之相对的,短提示词的优势开始受到更多关注。本文将深入探讨为何短AI提示词比长提示词更具优势。长提示词的困境信息过载与AI处理难题在与AI交互的过程中,许多人试图通过提供详尽的长
- Temu跨境新风口:2025年开店必知的账号安全指南
香菜9527
安全
近年来,Temu凭借其强大的供货链体系与超低价策略,成为跨境电商行业的新风口,吸引众多卖家入驻。随着平台竞争加剧,账号安全问题逐渐成为卖家面临的核心挑战。账号被封、资金冻结、违规操作等问题频发,轻则影响销量,重则导致店铺损失惨重。因此,了解并遵循安全运营规则,是每位卖家成功的关键。本文将为你详细解析Temu开店过程中必须掌握的账号安全知识,并提供实操建议,助你稳健运营。1.Temu账号安全为何重要
- sql2019安装重启计算机失败,SQL SERVER 2019安装失败
小蛋子儿哦
Detailedresults:Feature:全文和语义提取搜索Status:失败Reasonforfailure:该功能的某个依赖项出错,导致该功能的安装过程失败。NextStep:使用以下信息解决错误,卸载此功能,然后再次运行安装过程。Componentname:SQLServer数据库引擎服务实例功能Componenterrorcode:0x80004005Errordescription
- Tenacity(Python的坚韧重试库)
ftpeak
Pythonpython开发语言网络爬虫
概述Tenacity是一个基于Apache2.0协议的通用重试库,用Python编写,旨在简化向任何代码添加重试逻辑的过程。它起源于已停止维护的retrying库的分叉版本。Tenacity不兼容retrying的API,但新增了大量功能并修复了长期存在的错误。文档:Tenacity—Tenacitydocumentation主页:https://github.com/jd/tenacity核心功
- matlab两矩阵相似性,两个矩阵同时相似对角化MATLAB程序.docx
weixin_39870664
matlab两矩阵相似性
两个矩阵同时相似对角化MATLAB程序摘要:使用Matlab语言设计出实现两个复矩阵同时相似对角化的计算机程序。关键词:同时相似对角化;Matlab;程序矩阵对角化是重要的数学方法,但因其计算过程繁琐,人们往往望之生畏,尤其是多个矩阵同时对角化问题,因此本文设计出判断及计算两个复矩阵能否同时相似对角化的Matlab程序,用此能够方便地解决两个复矩阵同时相似对角化问题。1.理论基础定义[1]:设A、
- Pyhton安装PyQT6
三口一个桃
pythonpyqt
Windows系统使用CMD命令安装,对于系统中有多个版本python的,在安装pyqt6/pyqt5时需要针对每个python版本单独安装。安装准备过程:①Win+R打开CMD命令行窗口②输入命令:python--version查看当前python版本是否是自己需要安装pyqt6/5的的版本,若是则执行第③步,若不是则执行下述操作:打开电脑环境变量设置(自行百度)--点击系统变量中的Path项-
- 记一次SQLServer2019安装和卸载问题的解决过程
JKRaks
数据库sqlserver
记一次SQLServer2019安装和卸载问题的解决过程Title.内容介绍0.起因1.卸载出现问题2.尝试直接安装尝试解决3.直接搞不了要不看看修复下头铁继续整注册表4.再次尝试安装累了,想重装了5.针对Couldnotopenkey找找找Answer.自己总结出来的解决步骤Title.内容介绍个人之前遇到的SQLServer因为卸载的时候出现的某些问题导致没有卸载完,然后在后来安装的时候的有些
- JavaScript的函数拦截技术详解
天天进步2015
前端开发javascript开发语言ecmascript
引言在JavaScript的世界里,函数是一等公民。它们可以被赋值给变量,作为参数传递,甚至可以被动态修改。函数拦截(FunctionInterception)是一种强大的技术,允许开发者在不修改原始函数代码的情况下,拦截、监控和修改函数的行为。本文将深入探讨JavaScript函数拦截的各种技术、应用场景以及最佳实践。什么是函数拦截?函数拦截是指在函数执行前、执行中或执行后插入自定义逻辑的过程。
- SpringBoot原理篇-SpringBoot配置优先级-Bean管理-起步依赖原理-自动配置两种方案-源码跟踪-自定义starter
汐栊
springbootjavaspring
目录SpringBoot原理篇:配置文件优先级:Bean管理:Bean的作用域:第三方Bean:注意事项:起步依赖的原理:自动配置原理:自动配置:方案一:方案二:个人理解的SpringBoot的自动化配置原理:自动配置-@Conditionnal:自定义starter:SpringBoot原理篇:配置文件优先级:SpringBoot中支持的三种格式的配置文件:1.properties:server
- 【go】如何处理可选配置
还没入门的大菜狗
gogolang开发语言
问题背景:在设计API时,如何处理可选配置?1.配置结构体好处:解决兼容性,但问题是0值,和可读性差如何解决0值?——使用指针,将nil和类型0值做区分但是入参包含结构体,可读性差无法解决2.生成器模式生成器模式介绍生成器模式(BuilderPattern)是一种创建型设计模式,用于构建复杂对象。该模式将对象的构造过程与其表示分离,使同样的构建过程可以创建不同的表示。从您提供的代码中,我们可以看到
- 零基础上手Python数据分析 (7):Python 面向对象编程初步
kakaZhui
python数据分析excel
写在前面回顾一下,我们已经学习了Python的基本语法、数据类型、常用数据结构和文件操作、异常处理等。到目前为止,我们主要采用的是面向过程(ProceduralProgramming)的编程方式,即按照步骤一步一步地编写代码,解决问题。这种方式对于简单的任务已经足够,但当程序变得越来越复杂,代码量越来越大时,面向过程编程可能会显得力不从心,代码难以组织、复用和维护。代码复杂性带来的挑战:面向过程v
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f