大模型的出现和发展得益于增长的数据量、计算能力的提升以及算法优化等因素。这些模型在各种任务中展现出惊人的性能,比如自然语言处理、计算机视觉、语音识别等。这种模型通常采用深度神经网络结构,如 Transformer
、BERT
、GPT
( Generative Pre-trained Transformer )等。大模型的优势在于其能够捕捉和理解数据中更为复杂、抽象的特征和关系。通过大规模参数的学习,它们可以提高在各种任务上的泛化能力,并在未经过大量特定领域数据训练的情况下实现较好的表现。然而,大模型也面临着一些挑战,比如巨大的计算资源需求、高昂的训练成本、对大规模数据的依赖以及模型的可解释性等问题。因此,大模型的应用和发展也需要在性能、成本和道德等多个方面进行权衡和考量。InternLM-7B 包含了一个拥有 70 亿参数的基础模型和一个为实际场景量身定制的对话模型。该模型具有以下特点:1,利用数万亿的高质量 token 进行训练,建立了一个强大的知识库;2.支持 8k token 的上下文窗口长度,使得输入序列更长并增强了推理能力。基于 InternLM
训练框架,上海人工智能实验室已经发布了两个开源的预训练模型:InternLM-7B
和 InternLM-20B
。
InternLM
是一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖。通过单一的代码库,它支持在拥有数千个 GPU
的大型集群上进行预训练,并在单个 GPU
上进行微调,同时实现了卓越的性能优化。在 1024
个 GPU
上训练时,InternLM
可以实现近 90%
的加速效率。基于 InternLM
训练框架,上海人工智能实验室已经发布了两个开源的预训练模型:InternLM-7B
和 InternLM-20B
。Lagent
是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。通过 Lagent
框架可以更好的发挥 InternLM
的全部性能。
7B demo 的训练配置文件样例如下:
JOB_NAME = "7b_train"
SEQ_LEN = 2048
HIDDEN_SIZE = 4096
NUM_ATTENTION_HEAD = 32
MLP_RATIO = 8 / 3
NUM_LAYER = 32
VOCAB_SIZE = 103168
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
# Ckpt folder format:
# fs: 'local:/mnt/nfs/XXX'
SAVE_CKPT_FOLDER = "local:llm_ckpts"
LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
# boto3 Ckpt folder format:
# import os
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
# LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
CHECKPOINT_EVERY = 50
ckpt = dict(
enable_save_ckpt=False, # enable ckpt save.
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
# load_ckpt_folder=LOAD_CKPT_FOLDER, # Ckpt path to resume training(load weights and scheduler/context states).
# load_model_only_folder=MODEL_ONLY_FOLDER, # Path to initialize with given model weights.
load_optimizer=True, # Wheter to load optimizer states when continuing training.
checkpoint_every=CHECKPOINT_EVERY,
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
snapshot_ckpt_folder="/".join([SAVE_CKPT_FOLDER, "snapshot"]), # directory for snapshot ckpt storage path.
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
)
TRAIN_FOLDER = "/path/to/dataset"
VALID_FOLDER = "/path/to/dataset"
data = dict(
seq_len=SEQ_LEN,
# micro_num means the number of micro_batch contained in one gradient update
micro_num=4,
# packed_length = micro_bsz * SEQ_LEN
micro_bsz=2,
# defaults to the value of micro_num
valid_micro_num=4,
# defaults to 0, means disable evaluate
valid_every=50,
pack_sample_into_one=False,
total_steps=50000,
skip_batches="",
rampup_batch_size="",
# Datasets with less than 50 rows will be discarded
min_length=50,
# train_folder=TRAIN_FOLDER,
# valid_folder=VALID_FOLDER,
)
grad_scaler = dict(
fp16=dict(
# the initial loss scale, defaults to 2**16
initial_scale=2**16,
# the minimum loss scale, defaults to None
min_scale=1,
# the number of steps to increase loss scale when no overflow occurs
growth_interval=1000,
),
# the multiplication factor for increasing loss scale, defaults to 2
growth_factor=2,
# the multiplication factor for decreasing loss scale, defaults to 0.5
backoff_factor=0.5,
# the maximum loss scale, defaults to None
max_scale=2**24,
# the number of overflows before decreasing loss scale, defaults to 2
hysteresis=2,
)
hybrid_zero_optimizer = dict(
# Enable low_level_optimzer overlap_communication
overlap_sync_grad=True,
overlap_sync_param=True,
# bucket size for nccl communication params
reduce_bucket_size=512 * 1024 * 1024,
# grad clipping
clip_grad_norm=1.0,
)
loss = dict(
label_smoothing=0,
)
adam = dict(
lr=1e-4,
adam_beta1=0.9,
adam_beta2=0.95,
adam_beta2_c=0,
adam_eps=1e-8,
weight_decay=0.01,
)
lr_scheduler = dict(
total_steps=data["total_steps"],
init_steps=0, # optimizer_warmup_step
warmup_ratio=0.01,
eta_min=1e-5,
last_epoch=-1,
)
beta2_scheduler = dict(
init_beta2=adam["adam_beta2"],
c=adam["adam_beta2_c"],
cur_iter=-1,
)
model = dict(
checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
num_attention_heads=NUM_ATTENTION_HEAD,
embed_split_hidden=True,
vocab_size=VOCAB_SIZE,
embed_grad_scale=1,
parallel_output=True,
hidden_size=HIDDEN_SIZE,
num_layers=NUM_LAYER,
mlp_ratio=MLP_RATIO,
apply_post_layer_norm=False,
dtype="torch.float16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
norm_type="rmsnorm",
layer_norm_epsilon=1e-5,
use_flash_attn=True,
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
)
"""
zero1 parallel:
1. if zero1 <= 0, The size of the zero process group is equal to the size of the dp process group,
so parameters will be divided within the range of dp.
2. if zero1 == 1, zero is not used, and all dp groups retain the full amount of model parameters.
3. zero1 > 1 and zero1 <= dp world size, the world size of zero is a subset of dp world size.
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
pipeline parallel (dict):
1. size: int, the size of pipeline parallel.
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler.
tensor parallel: tensor parallel size, usually the number of GPUs per node.
"""
parallel = dict(
zero1=8,
pipeline=dict(size=1, interleaved_overlap=True),
sequence_parallel=False,
)
cudnn_deterministic = False
cudnn_benchmark = False
30B demo 训练配置文件样例如下:
JOB_NAME = "30b_train"
SEQ_LEN = 2048
HIDDEN_SIZE = 6144
NUM_ATTENTION_HEAD = 48
MLP_RATIO = 8 / 3
NUM_LAYER = 60
VOCAB_SIZE = 103168
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
# Ckpt folder format:
# fs: 'local:/mnt/nfs/XXX'
SAVE_CKPT_FOLDER = "local:llm_ckpts"
LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
# boto3 Ckpt folder format:
# import os
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
# LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
CHECKPOINT_EVERY = 50
ckpt = dict(
enable_save_ckpt=False, # enable ckpt save.
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
# load_ckpt_folder=LOAD_CKPT_FOLDER, # Ckpt path to resume training(load weights and scheduler/context states).
# load_model_only_folder=MODEL_ONLY_FOLDER, # Path to initialize with given model weights.
load_optimizer=True, # Wheter to load optimizer states when continuing training.
checkpoint_every=CHECKPOINT_EVERY,
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
snapshot_ckpt_folder="/".join([SAVE_CKPT_FOLDER, "snapshot"]), # directory for snapshot ckpt storage path.
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
)
TRAIN_FOLDER = "/path/to/dataset"
VALID_FOLDER = "/path/to/dataset"
data = dict(
seq_len=SEQ_LEN,
# micro_num means the number of micro_batch contained in one gradient update
micro_num=4,
# packed_length = micro_bsz * SEQ_LEN
micro_bsz=2,
# defaults to the value of micro_num
valid_micro_num=4,
# defaults to 0, means disable evaluate
valid_every=50,
pack_sample_into_one=False,
total_steps=50000,
skip_batches="",
rampup_batch_size="",
# Datasets with less than 50 rows will be discarded
min_length=50,
# train_folder=TRAIN_FOLDER,
# valid_folder=VALID_FOLDER,
)
grad_scaler = dict(
fp16=dict(
# the initial loss scale, defaults to 2**16
initial_scale=2**16,
# the minimum loss scale, defaults to None
min_scale=1,
# the number of steps to increase loss scale when no overflow occurs
growth_interval=1000,
),
# the multiplication factor for increasing loss scale, defaults to 2
growth_factor=2,
# the multiplication factor for decreasing loss scale, defaults to 0.5
backoff_factor=0.5,
# the maximum loss scale, defaults to None
max_scale=2**24,
# the number of overflows before decreasing loss scale, defaults to 2
hysteresis=2,
)
hybrid_zero_optimizer = dict(
# Enable low_level_optimzer overlap_communication
overlap_sync_grad=True,
overlap_sync_param=True,
# bucket size for nccl communication params
reduce_bucket_size=512 * 1024 * 1024,
# grad clipping
clip_grad_norm=1.0,
)
loss = dict(
label_smoothing=0,
)
adam = dict(
lr=1e-4,
adam_beta1=0.9,
adam_beta2=0.95,
adam_beta2_c=0,
adam_eps=1e-8,
weight_decay=0.01,
)
lr_scheduler = dict(
total_steps=data["total_steps"],
init_steps=0, # optimizer_warmup_step
warmup_ratio=0.01,
eta_min=1e-5,
last_epoch=-1,
)
beta2_scheduler = dict(
init_beta2=adam["adam_beta2"],
c=adam["adam_beta2_c"],
cur_iter=-1,
)
model = dict(
checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
num_attention_heads=NUM_ATTENTION_HEAD,
embed_split_hidden=True,
vocab_size=VOCAB_SIZE,
embed_grad_scale=1,
parallel_output=True,
hidden_size=HIDDEN_SIZE,
num_layers=NUM_LAYER,
mlp_ratio=MLP_RATIO,
apply_post_layer_norm=False,
dtype="torch.float16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
norm_type="rmsnorm",
layer_norm_epsilon=1e-5,
use_flash_attn=True,
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
)
"""
zero1 parallel:
1. if zero1 <= 0, The size of the zero process group is equal to the size of the dp process group,
so parameters will be divided within the range of dp.
2. if zero1 == 1, zero is not used, and all dp groups retain the full amount of model parameters.
3. zero1 > 1 and zero1 <= dp world size, the world size of zero is a subset of dp world size.
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
pipeline parallel (dict):
1. size: int, the size of pipeline parallel.
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler.
tensor parallel: tensor parallel size, usually the number of GPUs per node.
"""
parallel = dict(
zero1=-1,
tensor=4,
pipeline=dict(size=1, interleaved_overlap=True),
sequence_parallel=False,
)
cudnn_deterministic = False
cudnn_benchmark = False
30B Demo — InternLM 0.2.0 文档