- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- 电力知识图谱与大模型的结合:从构建到行业应用的深度解析
Cc不爱吃洋葱
知识图谱人工智能自然语言处理大模型大语言模型LLM语言模型
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了
- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- 【华为机考必备】华为2024届技术岗笔试全解 | 第五套
春秋招笔试突围
最新互联网春秋招试题合集华为春秋招笔试题华为
博主简介深耕互联网大厂校招的算法博主笔试突围,累计发布百万字大厂笔试解析,带领数百名学员斩获华为offer。专栏提供:✅实时更新的华为真题题库✅ACM模式编程实战模板✅高频算法思维导图速记华为笔试核心情报⏱️关键时间节点(2026届预测)地区考试时间窗口考试时长国内每周三19:00~21:002小时固定海外每周三19:00~次周19:00自选2小时连续段重要提醒:机考链接提前1天通过邮箱发送,逾期
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 美国股市主要指数介绍(Major U.S. Stock Market Indexes):三大股指(中英双语)
阿正的梦工坊
Finance金融
美国股市主要指数介绍美国股市是全球最重要的金融市场之一,其股市指数被广泛用来衡量市场表现。不同的指数代表不同类型的公司和市场趋势,投资者通常通过这些指数了解市场的整体状况。本文将介绍美国股市的主要指数,包括道琼斯工业平均指数(DJIA)、标普500指数(S&P500)和纳斯达克综合指数(NASDAQComposite),并探讨它们的特点和作用。1.道琼斯工业平均指数(DJIA)简称:道指(DowJ
- 基于eBPF的智能诊断平台:实现云原生系统的自愈型运维体系
桂月二二
云原生运维
引言:从被动运维到预测性自愈的进化当某电商平台通过eBPF实时诊断系统提前48小时预测到MySQL集群的锁竞争风暴时,其核心是千万级指标粒度的内核状态分析与AI驱动的根因定位算法的结合。运维数据显示,该平台将平均故障恢复时间(MTTR)从23分钟压缩到71秒,并自动修复了87%的异常事件。通过动态注入修复策略,集群CPU毛刺现象减少了94%,开创了智能运维的新纪元。一、传统可观测性工具的桎梏1.1
- 基于 Spring Cloud + Sentinel 的全面流量治理方案
power-辰南
java技术架构师成长专栏springcloudsentinelspring流量治理
一、精准评估系统最大负载1.流量建模历史日志分析流量特征提取业务场景拆解流量模型构建容量预测模型实施方法:使用ELK分析6个月Nginx日志,提取分时/分业务QPS曲线构建典型场景模型:日常流量(正态分布)、促销流量(脉冲模型)、恶意攻击(毛刺识别)容量公式:单实例容量=(CPU核心数*1000ms)/平均RT(ms)2.数据模拟与环境搭建#使用tcpcopy复制生产流量./tcpcopy-x80
- 机器学些|实战?
dami_king
随笔机器学习
机器学习实战:从零到%1…今天聊聊机器学习(MachineLearning,ML),这个听起来高大上的技术其实并没有那么神秘。跟着我的节奏,咱们一起来探索一下如何从零开始!准备工作:安装和导入必要的库在开始我们的房价预测项目之前,我们需要准备好开发环境并导入所有必要的库。这些库将帮助我们处理数据、构建模型、评估性能以及可视化结果。安装Python和JupyterNotebook首先,确保你已经安装
- 机器学习基本篇
胖胖的小肥猫
机器学习
1基本概念机器学习,分为回归,分类,聚类,降维有监督学习回归,分类,有特征,有标签,进行训练,然后对新数据进行预测无监督学习聚类,降维。题目越多,训练越好,2基本流程数据预处理——模型训练与评估可以优化为获取数据——数据预处理——EDA分析——特征工程——模型训练——可解释性分析2.0数据获取利用kaggle,天池等平台的开源数据,2.1预处理目的:让数据更符合逻辑让数据更容易计算借助函数实现变换
- 【YOLO模型】(1)--YOLO是什么
方世恩
YOLOYOLO人工智能目标检测
一、什么是YOLOYOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。1.核心思想它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。2.原理YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术
- LLM 参数解析:使用 OpenAI API 在 Python 中的实用指南(含示例)
真智AI
python人工智能chatgpt
当你使用大语言模型(LLM)时,可能会注意到,即使提交相同的请求,多次运行后仍然会得到不同的回应。这是因为LLM具有概率性,它们的输出基于所学到的模式和概率,而不是固定规则。幸运的是,你可以通过调整特定的参数来控制LLM的行为,就像微调收音机的旋钮来调整到想要的电台一样。理解这些参数可以帮助你更好地定制LLM的输出,使其更具可预测性或创造性,具体取决于你的需求。在本文中,我们将探讨多个关键参数,这
- Rust 与 WebAssembly 结合的优势
exploration-earth
学习
性能卓越:Rust语言以其可预测的性能著称,能够避免垃圾收集(GC)引发的暂停问题,这些问题常被称作停止世界(STW)暂停或即时编译(JIT)性能瓶颈。代码精简:由Rust编译生成的.wasm文件体积小巧,这有助于提升网页的加载速度。这些文件不会包含如垃圾收集器等不必要的额外开销,同时,通过高级优化和摇树技术,可以有效剔除无用代码,进一步精简文件大小。无缝集成与互操作:Rust具备自动生成与Rus
- 深度学习与图像识别:机器学习基础之回归
Shenrn_
机器学习回归深度学习
1.线性回归1.1一元线性回归1.2多元线性回归2.逻辑回归与线性回归的不同在于其将最终预测值y固定在一个范围之中2.1Sigmoid函数sigmoid函数表达式:p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:当z=0,p=0.5当z>0,p>0.5当z<0,p<0.5所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此
- 推荐系统Day2笔记
『₣λ¥√≈üĐ』
机器学习人工智能
协同过滤(CollaborativeFiltering)推荐算法是最经典、最常用的推荐算法。基本思想是:根据用户之前的喜好以及其他兴趣相近的用户的选择来给用户推荐物品。基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐。一般是仅仅基于用户的行为数据(评价、购买、下载等),而不依赖于项的任何附加信息(物品自身特征)或者用户的任何附加信息(年龄,性别等)。目前应用比较广泛
- 机器学习和线性回归、softmax回归
小名叫咸菜
人工智能线性回归
监督学习监督学习(supervisedlearning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。回归——平方误差损失函数回归(regression)是最简单的监督学习任务之一。分类——交叉熵样本属于“哪一类”的问题称为分类问题回归是训练一个回归函数来输出一个数值;分类是训练一个分
- 未来网络的高速引擎:800G光模块市场预测与应用前景
益莱储中国
信息与通信
近年来,VR、物联网、云计算等新业务的出现,对网络带宽、并发、实时性能提出了更高的要求。随着带宽需求持续飙升,100G、200G和400G光模块将保持重要的市场份额,800G光模块也将获得吸引力。800G光模块是AI算力产业链上的重要环节。随着AI算力需求的激增,800G光模块等高速光模块的需求显著增长,其市场规模也有望进一步扩大。光通信行业市场研究机构LightCounting指出,2022至2
- 大模型AI应用安全与合规测试实战指南-模型层
测试匠心:技能精进·职场跃迁·面试赢家
人工智能安全
——如何为生成式AI构筑“防火墙”与“红绿灯”一、当大模型落地时,我们在担忧什么?2023年,某金融公司上线智能客服,因未过滤用户隐私数据,导致信用卡号泄露;某医疗AI在诊断建议中生成错误药物剂量,引发监管审查……大模型在释放巨大商业价值的同时,安全与合规问题已成悬顶之剑。核心痛点直击:黑盒失控:生成内容不可预测,传统规则引擎失效数据深渊:训练数据含敏感信息,清洗难度指数级上升合规迷宫:全球AI监
- LSTM-SVM故障诊断 | 基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现
机器学习之心
分类预测神经网络lstm支持向量机LSTM-SVM故障诊断
LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现完整代码私信回复LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现一、引言1.1、研究背景和意义在现代工业生产中,机械设备的高效稳定运行对保障生产安全和提高生产效率至关重要。因此,故障诊断技术作为预防和维护设备性能的关键手段,受到了广泛关注和
- 吴恩达-机器学习-多元线性回归模型代码
StrawBerryTreea
机器学习机器学习线性回归python吴恩达
吴恩达《机器学习》2022版第一节第二周多元线性回归房价预测简单实现以下以下共两个实验,都是通过调用sklearn函数,分别实现了一元线性回归和多元线性回归的房价预测。一、一元线性回归importnumpyasnpnp.set_printoptions(precision=2)fromsklearn.linear_modelimportLinearRegression#输入数据X_train=np
- 基于Knative的无服务器引擎重构:实现毫秒级冷启动的云原生应用浪潮
桂月二二
云原生knativeserverless
引言:从微服务到无状态的量子跃迁当容器启动时间仍困在900ms高位时,某视频直播平台采用Knative将突发流量处理时效提升40倍,弹性扩缩响应速度突破至120ms级。基于流量预测的预启动算法与内核级资源复用池两大技术创新,正在重新定义Serverless时代的性能边界。IDC最新报告指出,采用该架构的企业资源利用率平均提升至78%,年度计算成本直降320万美元。一、传统FaaS模型的性能桎梏1.
- DeepSeek —— 金融市场中的AI颠覆者 !!!
云边有个稻草人
热门文章人工智能金融大数据DeepSeek
目录云边有个稻草人-CSDN博客引言第1章:DeepSeek的技术概述第2章:DeepSeek对金融行业的影响2.1自动化与决策支持2.2风险评估与管理2.3金融市场预测2.4高频交易与量化分析第3章:展示如何利用DeepSeek进行不同的金融数据分析3.1市场情绪分析3.2新闻事件对股票价格的影响3.3使用DeepSeek进行量化策略回测3.4使用DeepSeek进行投资组合优化第4章:金融界专
- 初识redux
未命名小孩
前端知识reactjstypescript
Redux是一个用于管理JavaScript应用程序状态的可预测状态容器核心概念1.单一数据源整个应用的状态被存储在一个单一的对象树(store)中,这个对象树位于唯一的store里。创建store:conststore=createStore(reducer)2.状态是只读的唯一改变状态的方法是触发一个action,action是一个描述状态变化的纯对象。这保证了所有的状态变化都是可追踪的。一个
- 国内十大工业物联网平台分析报告(2025年)
CServer_01
工业物联网工业物联网平台工业物联网平台选型物联网
目录1、工业物联网简介1.1、引言1.2、工业物联网平台架构1.3、工业物联网平台核心功能2、工业物联网发展趋势2.1、总体趋势2.2、技术趋势2.3、市场发展趋势2.4、应用趋势3、工业物联网平台市场预测3.1、工业物联网平台3.2、DCS3.3、实时数据库3.4、SCADA3.5、数字孪生3.6、设备全生命周期管理系统4、主要工业物联网平台供应商介绍4.1、蓝卓4.2、涂鸦智能4.3、中服云4
- 《探秘AI绿色计算:降低人工智能硬件能耗的热点技术》
程序猿阿伟
人工智能
在人工智能飞速发展的当下,其硬件能耗问题愈发凸显。据国际能源署预测,人工智能的能源消耗可能大幅增长。因此,降低人工智能硬件能耗,实现绿色计算,已成为行业关键课题。以下是一些正在崭露头角的热点技术。新型硬件架构与材料计算随机存取内存(CRAM):明尼苏达大学的研究团队开发的CRAM,能让数据完全在内存阵列内处理,无需离开计算机存储信息的网格,打破了传统冯·诺依曼体系结构中计算与内存之间的壁垒,可将人
- 程序员如何将技术咨询服务转化为SaaS产品
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
引言与概述在当今快速发展的数字化时代,软件即服务(SaaS)已经成为企业服务市场的重要趋势。随着云计算和大数据技术的普及,越来越多的企业开始将传统的技术咨询服务转化为SaaS产品,以提供更加灵活、可扩展的服务。这不仅为企业带来了新的增长点,也极大地改变了技术服务行业的发展格局。SaaS市场的增长趋势SaaS市场呈现出快速增长的态势,根据市场研究机构的预测,全球SaaS市场的规模将在未来几年内持续扩
- 2025游戏行业的趋势预测
疯子的游戏梦
游戏行业的理解游戏
一、市场现状从总产值的角度来看,游戏总产值的增长率已经放缓,由增量市场转化为存量市场,整体的竞争强度将会加大,技术水平不强(开发技术弱、产品品质低、开发效率低)的公司将会面临更大的生存的困难。从表现形式的角度来看,从2003年端游的兴起,到2015年移动游戏的兴起,游戏形式会随着设备的更迭而产生新的形式,在2025年-2030年,本人预测随着VR、AR设备的成熟(价格更低、性能更好、外形更小),游
- 商业计划书代写?别浪费钱
TNT_13302909089
商业计划书代写商业计划书创业计划书
商业计划书包含的范围很广,但一般离不开以下题目:经营者的理念、市场、客户、比较优势、管理团队、财务预测、风险因素等等。对市场的分析应由大入小,从宏观到微观,以数据为基础,深刻的描述公司/项目在市场中将争取的定位。对比较优势,应在非常清楚本身强弱情况及竞争对手的战略而作分析。至于管理团队,应从各人的背景及经验分析其对公司/项目中不同岗位的作用。财务预测是关键的,应将绝大部分的假设及其所引致的财务影响
- python 学习曲线函数_如何使用学习曲线来诊断你的LSTM模型的行为?(附代码)...
weixin_39576066
python学习曲线函数
LSTM是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。在自然语言处理、语言识别等一系列的应用上都取得了很好的效果。《LongShortTermMemoryNetworkswithPython》是澳大利亚机器学习专家JasonBrownlee的著作,里面详细介绍了LSTM模型的原理和使用。该书总共分为十四个章节,具体如下:第一章:什么是LSTMs?第二章:怎么样训练
- 第二章:12.4 学习曲线
望云山190
深度学习机器学习人工智能
学习曲线的基本概念学习曲线是展示机器学习模型性能如何随着训练数据量增加而变化的图表。它们可以帮助我们理解模型在不同数据量下的表现,以及模型是否过拟合或欠拟合。二阶模型的学习曲线交叉验证错误(Jcv):这条绿色曲线表示模型在未见过的数据上的表现。它反映了模型的泛化能力,即模型对新数据的预测能力。训练错误(Jtrain):这条红色曲线表示模型在训练数据上的表现。它反映了模型对训练数据的拟合程度。学习曲
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam