redis缓存穿透 击穿 雪崩

缓存雪崩

处理缓存雪崩简单,在批量往Redis存数据的时候,把每个Key的失效时间都加个随机值就好了,这样可以保证数据不会在同一时间大面积失效

setRedis(Key,value,time + Math.random() * 10000);

如果Redis是集群部署,将热点数据均匀分布在不同的Redis库中也能避免全部失效的问题,不过本渣我在生产环境中操作集群的时候,单个服务都是对应的单个Redis分片,是为了方便数据的管理,但是也同样有了可能会失效这样的弊端,失效时间随机是个好策略。

或者设置热点数据永远不过期,有更新操作就更新缓存就好了(比如运维更新了首页商品,那你刷下缓存就完事了,不要设置过期时间),电商首页的数据也可以用这个操作,保险.

缓存穿透

指缓存和数据库中都没有的数据,而用户不断发起请求,我们数据库的 id 都是1开始自增上去的,如发起为id值为 -1 的数据或 id 为特别大不存在的数据。这时的用户很可能是攻击者,攻击会导致数据库压力过大,严重会击垮数据库

image.png

像这种你如果不对参数做校验,数据库id都是大于0的,我一直用小于0的参数去请求你,每次都能绕开Redis直接打到数据库,数据库也查不到,每次都这样,并发高点就容易崩掉了

缓存击穿

这个跟缓存雪崩有点像,但是又有一点不一样,缓存雪崩是因为大面积的缓存失效,打崩了DB,而缓存击穿不同的是缓存击穿是指一个Key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个Key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个完好无损的桶上凿开了一个洞

缓存穿透我会在接口层增加校验,比如用户鉴权校验,参数做校验,不合法的参数直接代码Return,比如:id 做基础校验,id <=0的直接拦截等

这里我想提的一点就是,我们在开发程序的时候都要有一颗“不信任”的心,就是不要相信任何调用方,比如你提供了API接口出去,你有这几个参数,那我觉得作为被调用方,任何可能的参数情况都应该被考虑到,做校验,因为你不相信调用你的人,你不知道他会传什么参数给你。
举个简单的例子,你这个接口是分页查询的,但是你没对分页参数的大小做限制,调用的人万一一口气查 Integer.MAX_VALUE 一次请求就要你几秒,多几个并发你不就挂了么?是公司同事调用还好大不了发现了改掉,但是如果是黑客或者竞争对手呢?在你双十一当天就调你这个接口会发生什么,就不用我说了吧。这是之前的Leader跟我说的,我觉得大家也都应该了解下

从缓存取不到的数据,在数据库中也没有取到,这时也可以将对应Key的Value对写为null、位置错误、稍后重试这样的值具体取啥问产品,或者看具体的场景,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。

这样可以防止攻击用户反复用同一个id暴力攻击,但是我们要知道正常用户是不会在单秒内发起这么多次请求的,那网关层Nginx本渣我也记得有配置项,可以让运维大大对单个IP每秒访问次数超出阈值的IP都拉黑

还有我记得Redis还有一个高级用法布隆过滤器(Bloom Filter)这个也能很好的防止缓存穿透的发生,他的原理也很简单就是利用高效的数据结构和算法快速判断出你这个Key是否在数据库中存在,不存在你return就好了,存在你就去查了DB刷新KV再return。

那又有小伙伴说了如果黑客有很多个IP同时发起攻击呢?这点我一直也不是很想得通,但是一般级别的黑客没这么多肉鸡,再者正常级别的Redis集群都能抗住这种级别的访问的,小公司我想他们不会感兴趣的。把系统的高可用做好了,集群还是很能顶的。

缓存击穿的话,设置热点数据永远不过期。或者加上互斥锁就能搞定了

image.png

你可能感兴趣的:(redis缓存穿透 击穿 雪崩)