目录
一、Redis高可用简介
(一)什么是高可用
(二)Redis的高可用
二、Redis持久化的高可用技术
(一)持久化的功能
(二)进行持久化的方式
1.RDB 持久化
(1)触发条件
① 手动触发
② 自动触发
③ 其他自动触发机制
(2)执行流程
(3)启动时加载
2.AOF持久化
(1)开启AOF
编辑编辑编辑
(2) 执行流程
① 命令追加(append)
② 文件写入(write)和文件同步(sync)
同步文件策略
文件重写(rewrite)
文件重写压缩AOF文件的原因
文件重写的触发
编辑
特别注意
文件重写的流程
③ 启动时加载
3.RDB和AOF的优缺点
(1)RDB持久化
① 优点
② 缺点
(2)AOF持久化
① 优点
② 缺点
三、Redis性能管理
(一)查看Redis内存使用
(二)内存碎片
1.如何产生的
2.跟踪内存碎片率
3.解决碎片率大的问题
(1)Redis版本是4.0以下的
(2)Redis4.0版本开始
(三)内存使用率
1.避免内存交换发生
(四)内回收key
1.maxmemory-policy noenviction
(1)volatile-lru
(2))volatile-ttl
(3)volatile-random
(4)allkeys-lru
(5)allkeys-random
(6)noenviction
四、redis优化
五、redis的三大缓存问题
(一)缓存雪崩
1.原因
2.解决方法
(二)缓存穿透
1.原因
2.解决方法
(三)缓存击穿
1.原因
2.解决方法
六、如何保证 MySQL 和 redis 的数据一致性?
在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等,实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群。
持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。
原理是将 Reids在内存中的数据库记录定时保存到磁盘上。
RDB持久化的触发分为手动触发和自动触发两种
vim /usr/local/redis/conf/redis.conf
--433行--RDB默认保存策略
# save 3600 1 300 100 60 10000
#表示以下三个save条件满足任意一个时,都会引起bgsave的调用
save 3600 1 :当时间到3600秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--454行--是否开启RDB文件压缩
rdbcompression yes
--481行--指定RDB文件名
dbfilename dump.rdb
--504行--指定RDB文件和AOF文件所在目录
dir /usr/local/redis/data
① Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
② 父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
③ 父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
④ 子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
⑤ 子进程发送信号给父进程表示完成,父进程更新统计信息
AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /usr/local/redis/conf/redis.conf
--1380行--修改,开启AOF
appendonly yes
--1407行--指定AOF文件名称
appendfilename "appendonly.aof"
--1505行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
systemctl restart redis-server.service
由于需要记录Redis的每条写命令,因此AOF不需要触发
将Redis的写命令追加到缓冲区aof_buf,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。
AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /usr/local/redis/conf/redis.conf
--1439--
●appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
●appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
●appendfsync everysec: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。
vim /usr/local/redis/conf/redis.conf
--1480--
●auto-aof-rewrite-percentage 100
当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb
当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF
重写由父进程fork子进程进行;
重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。
(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。
RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。
与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好
192.168.168.50:6937> info memory
----- 内存碎片率 -----
mem_fragmentation_ratio:内存碎片率。mem_fragmentation_ratio = used_memory_rss / used_memory
used_memory_rss:是Redis向操作系统申请的内存。
used_memory:是Redis中的数据占用的内存。
used_memory_peak:redis内存使用的峰值。
对理解Redis实例的资源性能是非常重要的:
需要在 redis-cli 工具上输入 shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。Redis服务器重启后,Redis会将没用的内存归还给操作系统,碎片率会降下来。
可以在不重启的情况下,线上整理内存碎片。
config set activedefrag yes #自动碎片清理,内存就会自动清理了。
memory purge #手动碎片清理
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。
内存数据淘汰策略,保证合理分配redis有限的内存资源。
当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:
vim /usr/local/redis/conf/redis.conf
--1149--
maxmemory-policy noenviction
使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
从数据集合中任意选择数据淘汰(随机移除key)
禁止淘汰数据(不删除直到写满时报错)
1.设置 config set activedefrag yes 开启内存碎片自动清理,或者定时执行 memory purge 清理内存碎片
2.尽可能使用 hash 数据类型存储数据。因为 hash 类型的一个 key 可包含多个字段,该类型的数据占用空间较小
3.建议给 key 设置过期时间
4.精简 key 的键名和键值,控制 key 占用空间的大小,避免 bigkey 的产生(redis-cli --bigkeys 可用于查找bigKey)
5.修改配置 maxmemory 指定redis可占用的最大内存大小
修改配置 maxmemory-policy 指定内存数据淘汰策略(key的回收策略),实现保证内存使用率不超过最大内存
修改配置 maxmemory-samples 指定内存数据淘汰策略的样本数量,一般为3~7,值越大样本越精确
修改配置 maxclients 指定最大客户端连接数
修改配置 tcp-backlog 指定最大连接排队数
修改配置 timeout 指定连接超时时间
修改配置 lazyfree-lazy-expire yes 设置惰性删除,将删除过期key的操作放在后台中去执行,避免阻塞主线程
修改配置 no-appendfsync-on-rewrite yes 设置AOF文件重写期间,AOF后台子进程不进行刷盘操作,避免AOF重写和fsync竞争磁盘IO资源,导致redis延迟增加
6.设置AOF持久化和主从复制来备份数据,采用哨兵或集群模式实现redis集群的高可用
7.建议设置 config set requirepass 或 修改配置 requirepass 来设置 redis 密码
正常情况下,大部分的访问请求应该是先被redis响应的,在redis那里得不到响应的小部分访问请求才会去请求MySQL数据库获取数据,这样MySQL数据库的负载压力是非常小的,且可以正常工作。缓存雪崩/穿透/击穿三大问题的根本原因在于redis缓存命中率下降,大量请求会直接发送给MySQL数据库,导致MySQL数据库压力过大而崩溃。
redis中大量缓存key集体过期
大量请求访问redis和MySQL都不存在的资源
redis中一个热点key过期,此时又有大量用户访问这个热点key(redis-cli --hotkeys 可用于查找热Key)