Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
Note:
Example 1:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"] Output: 5 Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog", return its length 5.
这道题纠结了很长时间。自己写的一些方法都超时了,后来看的discuss,学到了一些新内容;
首先是deque 双边队列(double-ended queue)https://blog.csdn.net/happyrocking/article/details/80058623
d = collections.deque([])
d.append('a') # 在最右边添加一个元素,此时 d=deque('a')
d.appendleft('b') # 在最左边添加一个元素,此时 d=deque(['b', 'a'])
d.extend(['c','d']) # 在最右边添加所有元素,此时 d=deque(['b', 'a', 'c', 'd'])
d.extendleft(['e','f']) # 在最左边添加所有元素,此时 d=deque(['f', 'e', 'b', 'a', 'c', 'd'])
d.pop() # 将最右边的元素取出,返回 'd',此时 d=deque(['f', 'e', 'b', 'a', 'c'])
d.popleft() # 将最左边的元素取出,返回 'f',此时 d=deque(['e', 'b', 'a', 'c'])
d.rotate(-2) # 向左旋转两个位置(正数则向右旋转),此时 d=deque(['a', 'c', 'e', 'b'])
d.count('a') # 队列中'a'的个数,返回 1
d.remove('c') # 从队列中将'c'删除,此时 d=deque(['a', 'e', 'b'])
d.reverse() # 将队列倒序,此时 d=deque(['b', 'e', 'a'])
然后是set()方法进行查找:set内部实现是dict的。在in操作上是O(1),强于list
https://blog.csdn.net/acbattle/article/details/97012800
最后再来讲讲这个算法,还是BFS的思路。
重点的就是构造newword,比如hot,就会构建出aot,bot,cot...hat,hbt,hct...hoa,hob...会构建出26×len(word)个newword
而newword in wordList操作的时间复杂度为O(1)所以速度也很快
class Solution(object):
def ladderLength(self, beginWord, endWord, wordList):
"""
:type beginWord: str
:type endWord: str
:type wordList: List[str]
:rtype: int
"""
wordList = set(wordList)
import collections
bfs = collections.deque()
bfs.append([beginWord,1])
while bfs:
word, length = bfs.popleft()
if word == endWord:
return length
for i in range(len(word)):
for letter in "abcdefghijklmnopqrstuvwxyz":
newword = word[:i] + letter + word[i+1:]
if newword in wordList and newword != word:
wordList.remove(newword)
bfs.append([newword, length+1])
return 0