- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- Python dlib(HOG+SVM)人脸识别总结
程序媛一枚~
人脸识别python支持向量机开发语言读书笔记人脸检测识别
Pythondlib(HOG+SVM)人脸识别总结面部标志检测dlib68点(HOG+SVM),194点人脸识别模型,包括口(外嘴唇,内嘴唇),鼻,眉毛(左右眉),眼睛(左右眼),下鄂5点面部标志检测器(左眼2点,右眼2点,鼻子1点)面部对齐更高效眨眼检测ear眨眼瞬间达到0疲劳驾驶检测—连续帧ear面部对齐眼睛连线反正切获取旋转角度,期望图像眼睛横长度计算比率左眼计算右眼相对坐标眼睛横中心点作为
- 基于MATLAB图像特征识别及提取实现图像分类
jghhh01
机器学习算法人工智能
基于MATLAB的图形处理程序,可以进行图像特征识别及提取,进而实现图像分类。hog_svm.m,2276svm_images/test_image/1.jpg,20980svm_images/test_image/2.jpg,18246svm_images/test_image/3.jpg,13835svm_images/test_image/4.jpg,18539svm_images/test
- Pyeeg模块部分功能介绍
脑电情绪识别
脑电情绪识别python神经网络深度学习pycharm
1.pyeeg简单介绍PyEEG是一个Python模块(即函数库),用于提取EEG(脑电)特征。正在添加更多功能。它包含构建用于特征提取的数据的函数,例如从给定的时间序列构建嵌入序列。它还能够将功能导出为svmlight格式,以便调用机器学习及深度学习工具。2.部分函数介绍1.pyeeg.ap_entropy(X,M,R)pyeeg.ap_entropy(X, M, R)计算时间序列X的近似熵(A
- 基于传统机器学习SVM支持向量机进行分类和目标检测-视频介绍下自取
no_work
深度学习机器学习支持向量机分类
内容包括:python通过SVM+SIFT实现墙体裂缝检测107python通过SVM+SIFT实现墙体裂缝检测_哔哩哔哩_bilibili该代码使用python语言编写,代码实现了一个基于SVM(支持向量机)和SIFT(尺度不变特征变换)特征的裂缝检测系统。具体来说,分为两个部分:训练部分和检测部分。训练部分:加载图像:load_images函数从指定文件夹加载图像,并为每张图像分配标签(1表示
- SVM支持向量机python实现
努力的小巴掌
经典机器学习支持向量机
支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,主要用于分类和回归任务。SVM的核心思想是找到一个最优的超平面,使得不同类别的数据点能够被尽可能清晰地分开,并且这个超平面与最近的数据点之间有最大的间隔。这些最近的数据点被称为“支持向量”,因为它们决定了超平面的位置和方向。支持向量机的关键概念1.**最大间隔分离器**:-SVM的目标是找到一个超平面,该超平面
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 划界与分类的艺术:支持向量机(SVM)的深度解析
忘梓.
杂文支持向量机分类机器学习
划界与分类的艺术:支持向量机(SVM)的深度解析1.引言支持向量机(SupportVectorMachine,SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分隔数据,从而实现高效的分类。然而,它在高维数据中的复杂性和核方法的使用也带来了挑战。本文将深入探讨SVM的工作原理、实现技巧、适用场景及其局限性。2.SVM的数学基础与直观理解SV
- 基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真
代码探险狂人
分类matlab机器学习Matlab
基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真图像分类是计算机视觉领域中的重要任务之一,它的目标是将输入的图像分到不同的预定义类别中。在本文中,我们将介绍一种基于CIFAR-10图像数据集和支持向量机(SVM)的图像分类算法,并使用MATLAB进行仿真实现。CIFAR-10是一个常用的图像分类数据集,它包含了10个不同类别的60000个32x32彩色图像。这些类别包括飞机、汽车、
- BERT 模型微调与传统机器学习的对比
MYH516
bert机器学习人工智能
BERT微调与传统机器学习的区别和联系:传统机器学习流程传统机器学习处理文本分类通常包含以下步骤:特征工程:手动设计特征(如TF-IDF、词袋模型)模型训练:使用分类器(如SVM、随机森林、逻辑回归)特征和模型调优:反复调整特征和超参数BERT微调流程BERT微调的典型流程:预训练:使用大规模无标注数据预训练BERT模型数据准备:将文本转换为BERT输入格式(tokenize、添加特殊标记)模型微
- 《Image Classification with Classic and Deep Learning Techniques》复现
几何心凉
IT优质推荐深度学习人工智能
1引言图像分类作为计算机视觉领域的核心任务,旨在将输入图像映射到离散化的语义类别标签,广泛应用于人脸识别、自动驾驶、医疗影像诊断、安防监控等场景。传统方法主要依赖手工设计的特征描述子(如SIFT、HOG、LBP)结合浅层模型(如BoVW、Fisher向量、SVM),以其可解释性和低资源消耗见长,但在端到端优化与高级表征能力方面不及深度学习。近年来,卷积神经网络(CNN)在大规模数据集(如Image
- AI入门——AI大模型、深度学习、机器学习总结
超级-码力
人工智能深度学习机器学习AIGC
以下是对AI深度学习、机器学习相关核心技术的总结与拓展,结合技术演进逻辑与前沿趋势,以全新视角呈现关键知识点一、深度学习:从感知到认知的技术革命核心突破:自动化特征工程的范式变革深度学习通过多层神经网络架构(如卷积神经网络CNN、循环神经网络RNN),实现了从原始数据中自主学习分层特征的能力。相较于传统机器学习依赖人工设计特征(如SVM的核函数、手工提取的图像边缘特征),其核心优势体现在:层次化抽
- OpenCV零基础极速入门:详解跨平台安装与环境配置(一)
WHCIS
opencvopencv人工智能计算机视觉
一、深入理解OpenCV技术生态1.1OpenCV架构解析OpenCV采用模块化设计,核心架构分为四大层次:核心模块(Core):矩阵运算、文件IO、基础数据结构图像处理(Imgproc):滤波、几何变换、特征检测高级视觉(Highgui):GUI交互、视频流处理机器学习(ML):SVM、决策树、神经网络1.2版本选择策略版本类型适用场景典型版本基础版快速原型开发opencv-python4.9.
- 【统计方法】基础分类器: logistic, knn, svm, lda
pen-ai
数据科学支持向量机算法机器学习
均方误差(MSE)理解与分解在监督学习中,均方误差衡量的是预测值与实际值之间的平均平方差:MSE=E[(Y−f^(X))2]\text{MSE}=\mathbb{E}[(Y-\hat{f}(X))^2]MSE=E[(Y−f^(X))2]MSE可以分解为三部分:MSE=Bias2(f^(x0))+Var(f^(x0))+Var(ε)\text{MSE}=\text{Bias}^2(\hat{f}(x
- 08_预处理与缩放
白杆杆红伞伞
machinelearning机器学习支持向量机人工智能
描述机器学习的一些算法(如神经网络、SVM)对数据缩放非常敏感。通常的做法是对特征进行调节,使数据表示更适合与这些算法。scikit-learn中提供了4中数据缩放方法:StandardScaler:确保每个特征平均值为0,方差为1,使所有特征都位于同一量级RobusScaler:工作原理与StandardScaler类似,确保每个特性的统计属性都位于同一范围MinMaxScaler:移动数据,使
- python怎么训练模型_python svm 怎么训练模型
weixin_39529903
python怎么训练模型
展开全部支持2113向量机SVM(SupportVectorMachine)是有监督的分类预测模型,本篇文章5261使用机器学习库scikit-learn中的手写数字数4102据集介绍使用Python对SVM模型进行1653训练并对手写数字进行识别的过程。准备工作手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作
- 核函数:解锁支持向量机的强大能力
从零开始学习人工智能
大数据人工智能机器学习
在机器学习的世界中,支持向量机(SVM)是一种强大的分类算法,而核函数则是其背后的“魔法”,让SVM能够处理复杂的非线性问题。今天,我们就来深入探讨核函数的奥秘,看看它们是如何帮助SVM在高维空间中找到最佳决策边界的。一、核函数是什么?核函数本质上是一种计算两个向量在高维空间中内积的方法,但它避免了直接将数据映射到高维空间的复杂计算。通过核函数,我们可以巧妙地将原始数据从低维空间映射到高维空间,从
- 支持向量机(SVM):解锁数据分类与回归的强大工具
从零开始学习人工智能
人工智能开源性能优化
在机器学习的世界中,支持向量机(SupportVectorMachine,简称SVM)一直以其强大的分类和回归能力而备受关注。本文将深入探讨SVM的核心功能,以及它如何在各种实际问题中发挥作用。一、SVM是什么?支持向量机是一种监督学习算法,主要用于分类和回归任务。它的核心思想是通过在特征空间中找到一个最优的分界面(超平面),将不同类别的数据点分隔开,或者拟合出一个回归函数来预测目标值。SVM的强
- JVM 视角下的指针压缩技术实现
javajvm
1准备1.1FBIWARNING文章异常啰嗦且绕弯。1.2版本使用openjdk24为跟踪的源码。fork仓库:https://github.com/openjdk/jdk/2源码追踪2.1oopDesc在JVM中,Java对象的最高层级抽象是oopDesc。代码路径在hotspot/share/oops/oop.hpp中。classoopDesc{friendclassVMStructs;fri
- 双路物理CPU机器上安装Ubuntu并部署KVM以实现系统多开
欧先生^_^
ubuntulinux运维
在双路物理CPU机器上安装Ubuntu并部署KVM以实现系统多开,并追求性能最优,需要从硬件、宿主机系统、KVM配置、虚拟机配置等多个层面进行优化。以下是详细的操作指南和优化建议:阶段一:BIOS/UEFI设置优化(重启进入)启用虚拟化技术:IntelCPU:IntelVT-x(VirtualizationTechnology)AMDCPU:AMD-V(SVM-SecureVirtualMachi
- 【Python深度学习(第二版)(2)】深度学习之前:机器学习简史
roman_日积跬步-终至千里
#python深度学习(第二版)深度学习机器学习人工智能
文章目录一.深度学习的起源1.概率建模--机器学习分类器2.早期神经网络--反向传播算法的转折3.核方法--忽略神经网络4.决策树、随机森林和梯度提升机5.神经网络替代svm与决策树二.深度学习与机器学习有何不同可以这样说,当前工业界所使用的大部分机器学习算法不是深度学习算法。深度学习不一定总是解决问题的正确工具:有时没有足够的数据,深度学习不适用;有时用其他算法可以更好地解决问题。如果第一次接触
- Python 学习日记 day15
heard_222532
Python学习日记python学习机器学习
@浙大疏锦行CRWUBearingsSVM_Fault_Classificationimportnumpyasnpfromsklearn.datasetsimportmake_classificationfromsklearn.model_selectionimporttrain_test_splitfromsklearn.linear_modelimportLogisticRegressionf
- 支持向量机(SVM)例题
phoenix@Capricornus
PR书稿支持向量机算法机器学习
对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量A(0,2)A(0,2)A(0,2)、B(2,0)B(2,0)B(2,0)和C(−1,−1)C(-1,-1)C(−1,−1)。求支持向量机的线性判别函数。删除点A后,支持向量是否变化?求解:三个点,建立联立方程组:{w1xA+w2yA+b=1w1xB+w2yB+b=1w1xC+w2yC+b=−1\begin{case
- 支持向量机SVM:从数学原理到实际应用
代码很孬写
支持向量机算法机器学习语言模型自然语言处理ai人工智能
前言本篇文章全面深入地探讨了支持向量机(SVM)的各个方面,从基本概念、数学背景到Python和PyTorch的代码实现。文章还涵盖了SVM在文本分类、图像识别、生物信息学、金融预测等多个实际应用场景中的用法。一、引言背景支持向量机(SVM,SupportVectorMachines)是一种广泛应用于分类、回归、甚至是异常检测的监督学习算法。自从Vapnik和Chervonenkis在1995年首
- 计算机视觉(图像算法工程师)学习路线
陳錄生
计算机视觉学习人工智能
计算机视觉学习路线Python基础常量与变量列表、元组、字典、集合运算符循环条件控制语句函数面向对象与类包与模块Numpy+Pandas+Matplotlibnumpy机器学习回归问题线性回归Lasso回归Ridge回归多项式回归决策树回归AdaBoostGBDT随机森林回归分类问题逻辑回归决策树ID3-信息增益C4.5-信息增益率随机森林SVMNaiveBayes聚类问题K-MeansMDSCA
- 基于C++实现的深度学习(cnn/svm)分类器Demo
长长同学
深度学习c++cnn
1.项目简介本项目是一个基于C++实现的深度学习与传统机器学习结合的分类器Demo,主要流程为:从CSV文件读取样本数据用卷积神经网络(CNN)进行特征提取用支持向量机(SVM)进行最终分类支持模型的保存与加载提供DLL接口,方便与其他软件集成网盘地址:https://pan.baidu.com/s/1VoFdPAzueITcl_Up6hR_Wg2.主要结构与全局变量Sample结构体:存储单个样
- python打卡DAY25
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- python打卡DAY20
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshapfromsklearn.svmimportSVC#支持向量机分类器#fromsklearn.neighborsimportKNeighborsClassifier#K近
- python 打卡DAY27
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》